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Preface

Linear algebra is an elegant subject and remarkable tool whose influence reaches
well beyond uses in pure and applied mathematics. Certainly all math majors as
well as majors from a growning number of STEM fields have taken a first course
in linear algebra. On the other hand, as with any tool or collection of knowledge,
without frequent use, one’s facility with the material wanes.

These notes are not intended as a first or second course in linear algebra,
though they assume the reader has seen the material in a basic linear algebra
course, covered for example in [1], [2], or [3].

These notes will undertake a review of many basic topics from a typical first
course, often taking the opportunity to interleave more advanced concepts with
simpler ones when convenient. It will refresh the reader’s memory of definitions,
structural results, core examples, and provide some computational tools to help
the reader come to a deeper appreciation of the ideas first met perhaps a long
time ago.

An additional resource of which to take advantage is Robert Beezer’s A First
Course in Linear Algebra1 which explores the use of computation in far more
depth than is done here. Computations in these notes uses Sage (sagemath.org2)
which is a free, open source, software system for advanced mathematics. Sage
can be used either on your own computer, a local server, or on SageMathCloud
(https://cocalc.com3).

Thomas R. Shemanske
Hanover, NH
2020

1linear.ups.edu
2sagemath.org
3cocalc.com
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Chapter 1

A quick review of a first course

As stated in the preface, these notes presume the reader has seen the material
in a basic linear algebra course such as in [1], [2], or [3] at some point in their
past. This first chapter is a rapid summary of the theory up to inner product
spaces. It includes vector spaces and linear maps, span and linear independence,
coordinates and the matrix of a linear map, the notions of rank and nulllity,
and the basic results surrounding diagonalization. It ends with some examples
showing how to leverage Sage to answer questions surrounding these basic ideas.

1.1 Vector spaces and linear maps
In simplest terms, linear algebra is the study of vector spaces and linear maps
between them. But what does that really mean? One overriding goal in Math-
ematics is to classify objects into distinct “types”, and also to characterize the
manner in which complicated structures are constructed from simpler ones. For
example, in linear algebra the notion of when two vector spaces are the same
“type” (i.e., are indistinguishable as vector spaces) is captured by the notion of
isomorphism. In terms of structure, the notions of bases and direct sums play a
crucial role.

1.1.1 Some familiar examples of vector spaces
While most of the examples and applications we shall consider are vector spaces
over the field of real or complex numbers, for the examples below, we let F
denote any field. First recall the definition of a vector space [click the link to
toggle the definition].

• For an integer n ≥ 1, the set V = F n, of n-tuples of numbers in F viewed
as column vectors with n entries, is a vector space over F .

• For integers m,n ≥ 1, the vector space of m × n matrices with entries
from F is denoted Mm×n(F ). Column vectors in Fm are the matrices in
Mm×1(F ), while row vectors in F n are matrices in M1×n(F ).

1
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• For an integer n ≥ 1, we denote by Pn(F ) the vector space of polynomials
of degree at most n having coefficients in F .

• The vector space of all polynomials with coefficients in F is often denoted
as P (F ) in many linear algebra texts, though in more advanced courses
(say abstract algebra) the more typical notation is F [x] (with x the inde-
terminant), a notation we shall use here.

1.1.2 Linear independent and spanning sets
Let V be a vector space over a field F . For a subset S ⊆ V , we have the fun-
damental notions of linear independence, linear dependence, span, basis, and di-
mension. We remind the reader that even when dealing with infinite dimensional
vector spaces, linear combinations involve only a finite number of summands.
Checkpoint 1.1.1 Let W be a subspace of a vector space V , and S a subset of
W. Show that Span(S) ⊆ W.

Hint. Since W is itself a vector space, it is closed under vector addition and
scalar multiplication.

There are many important theorems which relate the above notions and
which can be found in all standard books. We summarize some of these here.

For the remainder of this section we restrict to a vector space V of finite
dimension n.

Theorem 1.1.2 Constructing bases. Let V have finite dimension n, and let
S ⊂ V.

• If S is linearly independent, then #S ≤ n, and if #S < n, then S can be
extended to a basis for V , that is there is a finite subset T of V , so that
S ∪ T is a basis for V.

• If #S > n, then S is linearly dependent, and there is a subset S0 ⊂ S
which is linearly independent and for which Span(S0) = Span(S).

• In more colloquial terms, any linearly independent subset of V can be
extended to a basis for V, and any spanning set can be reduced to produce
a basis.

As a consequence of the above, we have another important theorem.
Theorem 1.1.3 Let V be a vector space with finite dimension n. Then

• Any set of n linearly independent vectors in V is a basis for V .

• Any set of n vectors in V which span V is a basis for V .

Proof. The proofs are straightforward from the above since if a set of n linearly
independent vectors in V did not span, you could add a vector to the set of n and
obtain an independent set with n+1 elements. Similarly, if n elements spanned
V but were not independent, you could eliminate one giving a basis with too few
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elements. ■
Fundamental to the proofs of these theorems is the following:

Theorem 1.1.4 If S ⊂ V is a linearly independent set, and v ∈ V \ Span(S),
then S ∪ {v} is linearly independent.

Exercises

1. Let A be an m×n matrix. Its row space is the span of the rows of A and
so is a subspace of F n. Its column space is the span of its columns and
so is a subspace of Fm.

Can any given column of a matrix always be used as part of a basis for
the column space?
Hint. Under what conditions is a set with one vector a linearly indepen-
dent subset of the vector space?
Answer. Any column of a matrix which is not the column of all zeros can
be used as part of the basis of the column space since the single nonzero
column is a linearly independent set.

2. Suppose the first two columns of a matrix are nonzero. What is an easy way
to check that both columns can be part of a basis for the column space?
Hint. What does the notion of linear dependence reduce to in the case of
two vectors?
Answer. Two columns which are not multiples of one another may be
used as part of the basis for the column space.

3. Do you think there is an easy way to determine if the first three nonzero
columns of a matrix can be part of a basis for the column space?
Hint. Easy may be in the eye of the beholder.
Answer. Not typically by inspection. Given the first two columns are lin-
early independent, one needs to know the third is not a linear combination
of the first two. In Section 1.3 we provide answers using either elementary
column operations, or perhaps surprisingly elementary row operations.

1.1.3 Defining a linear map.
Starting from the definition of a linear map, one proves by induction that a
linear map takes linear combinations of vectors in the domain to the same linear
combination of the corresponding vectors in the codomain. More precisely we
have
Proposition 1.1.5 Linear maps preserve structure. Let V,W be vector
spaces over a field F , and T : V → W a linear map. Then for every finite
collection of vectors v1, . . . , vr ∈ V , and scalars a1, . . . ar ∈ F we have

T (a1v1 + · · ·+ arvr) = a1T (v1) + · · ·+ arT (vr). (1.1.1)
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If the goal is to define a linear map T : V → W , one must define T (v) for
all vectors v ∈ V , so it is ideal to know how to represent a given vector as a
linear combination of others. In particular this leads to the notion of a basis for
a vector space. Recall some standard bases for familiar vector spaces.

So now let’s suppose V is a finite-dimensional vector space over a field F
with basis B = {v1, . . . , vn}, and W is a completely arbitrary vector space over
F . To define a linear map T : V → W it is certainly necessary to define the
values T (v1), . . . , T (vn). The important point is that this is all that needs to be
done!
Theorem 1.1.6 Uniquely defined linear maps. Let V be a finite-
dimensional vector space over a field F with basis B = {v1, . . . , vn}. Let W
be any vector space over F , and let w1, . . . , wn be arbitrarily chosen vectors in
W . Then there is a unique linear map T : V → W which satisfies T (vi) = wi,
for i = 1, . . . n.

Indeed Proposition 1.1.5 tells us that if such a linear map T exists, then
T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn. (1.1.2)

Since B = {v1, . . . , vn} is a basis for V , every element of V has a unique expres-
sion of the form a1v1 + · · ·+ anvn, so the map T is defined for every vector in V ,
and it is easy to determine from its definition that T is indeed a linear map.

Next recall the definition of the span of a set of vectors, and gain some facility
by doing the following exercises.

Exercises

1. Let T : V → W be a linear map between vector spaces, and {v1, . . . , vr} ⊆
V. Show that

T (Span({v1, . . . , vr})) = Span{T (v1), . . . , T (vr)}.

Hint 1. When you want to show that two sets, say X and Y are equal,
you must show X ⊆ Y and Y ⊆ X. And to show that (for example) X ⊆ Y ,
you need only show that for each choice of x ∈ X, that x ∈ Y .
Hint 2. So if w ∈ T (Span({v1, . . . , vr})), then w = T (a1v1 + · · · + arvr)
for some choice of scalars a1, . . . , ar.

2. Let V = P2(R) be the vector space of all polynomials of degree at most two
with real coefficients. We know that both sets {1, x, x2} and {2, 3x, 2+3x+
4x2} are bases for V.

By Theorem 1.1.6, there are uniquely determined linear maps S, T :
V → V defined by

T (1) = 0, T (x) = 1, T (x2) = 2x.

S(2) = 0, S(3x) = 3, S(2 + 3x+ 4x2) = 3 + 8x.

Show that the maps S and T are the same.
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Hint 1. Why is it enough to show that S(1) = 0, S(x) = 1, and S(x2) =
2x?
Hint 2. How does the linearity of S play a role?

1.2 Measuring injectivity and surjectivity

1.2.1 Injective and surjective linear maps: assessment and
implications.

Given a linear map T : V → W (between vector spaces V,W ), we know the
function-theoretic definitions of injective and surjective. Let’s first give an alter-
nate characterization of these primitives, and then explore how linearity informs
and refines our knowledge.

Given a function f : X → Y between sets X and Y , and an element y ∈ Y ,
the inverse image of y is the set of elements of X which map onto y via f ,
that is

f−1(y) = {x ∈ X | f(x) = y}.

Thus an equivalent way in which to say that a function f is surjective is if
for every y ∈ Y , the inverse image, f−1(y) is non-empty, and an equivalent way
to say that a function is injective is to say for every y ∈ Y , the inverse image,
f−1(y) is either empty or consists of a single element.

For a linear map T : V → W , the inverse image of the 0W in W plays a
special role and is given name recognition:
Definition 1.2.1 The kernel or nullspace of T is defined as

ker(T ) = Null(T ) = T−1(0W ) = {v ∈ V | T (v) = 0W}.

♢
One recalls that since T (0V ) = 0W , we always have 0V ∈ ker(T ), and indeed

the kernel (null space) is a subspace of V .
Now using that for a linear map T , T (v) = T (v′) if and only if T (v−v′) = 0W ,

one easily deduces the familiar proposition below. Since it should be clear from
context, we shall henceforth simply write 0, leaving to the reader to understand
the space to which we are referring.

Proposition 1.2.2 A linear map T : V → W is injective if and only if ker(T ) =
{0}.

The significance of this proposition is that rather than checking that T−1(w)
consists of at most one element for every w ∈ W (as for a generic function), for
linear maps it is enough to check for the single element w = 0. The kernel also
says something about the image of a linear map. Suppose T (v0) = w. Then
T (v) = w if and only if v = v0 + k, where k ∈ ker(T ). Said another way

T−1(w) = {v0 + k | k ∈ ker(T )} = v0 + ker(T ). (1.2.1)
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Now that we have reminded ourselves of the definitions and basic properties,
we explore how bases dovetail with the notion of injective and surjective linear
maps.
Proposition 1.2.3 Linear maps and bases. Let T : V → W be a linear
map between vector spaces and suppose that V is finite-dimensional with basis
B = {v1, . . . , vn}. Then

1. T is injective if and only if {T (v1), . . . , T (vn)} is a linearly independent
subset of W .

2. T is surjective if and only if {T (v1), . . . , T (vn)} is a spanning set for W .

Proof of (1). First suppose that T is injective and to proceed by contradiction
that {T (v1), . . . , T (vn)} is linearly dependent. Then there exist scalars a1, . . . , an
not all zero, so that

a1T (v1) + · · ·+ anT (vn) = 0.
By (1.1.1)

T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ arT (vr) = 0,

which means that (a1v1+· · ·+anvn) ∈ ker(T ). Since B = {v1, . . . , vn} is a linearly
independent set and the ai’s are not all zero, we conclude ker(T ) 6= {0} which
contradicts that T is injective.
Conversely suppose that {T (v1), . . . , T (vn)} is a linearly independent subset of
W , but that T is not injective. Then ker(T ) 6= {0}, and since {v1, . . . , vn} is a
basis for V , there exist scalars a1, . . . , an not all zero so that a1v1 + · · ·+ anvn ∈
ker(T ). But this in turn says that

0 = T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn),

(again by Proposition 1.1.5) showing that {T (v1), . . . , T (vn)} is linearly depen-
dent, a contradiction. ■

Proof of (2). First suppose that {T (v1), . . . , T (vn)} is a spanning set for W .
Since T (V ), the image of T , is a subspace of W , and {T (v1), . . . , T (vn)} ⊂ T (V )

W = Span{T (v1), . . . , T (vn)} ⊆ T (V ),

so T is surjective.
Conversely if T is surjective, then T (V ) = W. But with a very slight generaliza-
tion of Proposition 1.1.5, we see that

W = T (V ) = T (Span{v1, . . . , vn}) = Span{T (v1), . . . , T (vn)},

showing that (v1), . . . , T (vn)} is a spanning set for W. ■
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Example 1.2.4 Some easy-to-check isomorphisms.

• For an integer n ≥ 1, the vector spaces V = F n+1 and W = Pn(F ) are
isomorphic. One bijective linear map which demonstrates this is T : V →
W given by T (a0, . . . , an) = a0+a1x+· · ·+anx

n where we have written the
element (a0, . . . , an) ∈ F n+1 as a row vector for typographical simplicity.

• A more explicit example is that F 6 is isomorphic to M2×3(F ) via

T (a1, . . . , a6) =

[
a1 a2 a3
a4 a5 a6

]
.

□

1.2.2 Notions connected to isomorphism
There are many important concepts related to isomorphism. Taking a top-down
approach, one of the most important theorems in the classification of vector
spaces applies to finite-dimensional vector spaces. The classification theorem is
Theorem 1.2.5 Classification theorem for finite-dimensional vector
spaces. Two finite-dimensional vector spaces V and W defined over the same
field F are isomorphic if and only if dimV = dimW.

The proof of this theorem (often stated succinctly as “map a basis to a
basis”) captures a great deal about the dynamics of linear algebra including how
to define a map known to be linear and how to determine whether it is injective
or surjective. Try to write the proof on your own.
Proof. First let’s suppose that dimV = dimW . That means that any bases for
the two spaces have the same cardinality. Let {v1, . . . , vn} be a basis for V , and
{w1, . . . , wn} be a basis for W . By Theorem 1.1.6, there is a unique linear map
which takes T (vi) = wi, for i = 1, . . . , n. By Proposition 1.2.3, it follows that T
is both injective and surjective, hence an isomorphism.
Conversely, suppose that T : V → W is an isomorphism and the {v1, . . . , vn} is
a basis for V. Once again by Proposition 1.2.3, it follows that {T (v1), . . . , T (vn)}
is a basis for W , and since the cardinality of any basis determines the dimension
of the space, we have dimV = dimW. ■

1.3 Rank and Nullity

1.3.1 Some fundamental subspaces
Let T : V → W be a linear map between vector spaces over a field F. We have
defined the kernel of T , ker(T ) = Null(T ), (also called the nullspace) and noted
that it is a subspace of the domain V. The image of T , Im(T ), is a subspace of
the codomain W.
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1.3.2 The rank-nullity theorem
Given a linear map T : V → W , with V finite dimensional, there is a fundamental
theorem relating the dimension of V to the dimensions of ker(T ) and Im(T ).

Theorem 1.3.1 The Rank-Nullity Theorem (aka the dimension theo-
rem). Let T : V → W be a linear map, with V a finite-dimensional vector space.
Then

dimV = rank(T ) + nullity(T ) = dim Im(T ) + dim ker(T ).

Proof. Let n = dimV, and recall that if {v1, . . . , vn} is any basis for V , then
Im(T ) = Span({T (v1), . . . , T (vn)}).
First consider the case that T is injective. This means that ker(T ) = {0},
so that nullity(T ) = 0. By Proposition 1.2.3, the set {T (v1), . . . , T (vn)} is
linearly independent, and since this set spans Im(T ), it is a basis for Im(T ), so its
cardinality equals the dimension of the image, i.e., rank(T ). Thus rank(T ) = n,
and we see that

n = dimV = n+ 0 = rank(T ) + nullity(T ).

Now consider the case where ker(T ) 6= {0}. Let {u1, . . . , uk} be a basis for
ker(T ), hence nullity(T ) = k. Since {u1, . . . , uk} is a linearly independent set, by
[provisional cross-reference: prop-extend-independent-set-to-basis],
it can be extended to a basis for V :

{u1, . . . , uk, uk+1, . . . , un}

To establish the theorem, we need only show that rank(T ) =
n − k. Since {u1, . . . , uk, uk+1, . . . , un} is a basis for V , Im(T ) =
Span({T (u1), . . . , T (un)}), but we recall that u1, . . . , uk ∈ ker(T ), so that
Im(T ) = Span({T (uk+1), . . . , T (un)}). Thus we know rankT ≤ n− k. To obtain
an equality, we need only show that the set {T (uk+1), . . . , T (un)} is linearly
independent.
Suppose to the contrary, that the set is linearly independent. Then there exists
scalars ai ∈ F , not all zero, so that

n∑
i=k+1

aiT (ui) = 0.

By linearity, this says T (
∑r

i=k+1 aiui) = 0, which means
∑r

i=k+1 aiui ∈ ker(T ).
But this in turn says that

∑r
i=k+1 aiui ∈ Span({u1, . . . , uk}) implying the full

set {u1, . . . , un} is linearly dependent, contradicting that it is a basis for V. This
completes the proof. ■

Let’s do a simple example.

Example 1.3.2 Consider the linear map T : P3(R) → P3(R) given by T (f) =
f ′′ + f ′, where f ′ and f ′′ are the first and second derivatives of f.
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The domain has dimension 4 with standard basis {1, x, x2, x3}, so

Im(T ) = Span{T (1), T (x), T (x2), T (x3)}

One easily checks that Im(T ) = Span{0, 1, 2 + 2x, 6x + 3x2} = Span{1, x, x2}.
At the very least we know that rank(T ) ≤ 3, and since T (1) = 0, we must have
nullity(T ) ≥ 1. Now since {1, x, x2} is a linearly independent set, we know that
rank(T ) = 3 which means that nullity(T ) = 1 by Theorem 1.3.1. It follows that
{1} is a basis for the nullspace. □

1.3.3 Computing rank and nullity
Let A ∈ Mm×n(F ) be a matrix. Then T (x) = Ax defines a linear map T : F n →
Fm. Indeed in Subsection 1.4.2, we shall see how to translate the action of an
arbitrary linear map between finite-dimensional vectors spaces into an action of
a matrix on column vectors.

Let’s recall how to extract the image and kernel of the linear map x 7→ Ax.
We know that the image of any linear map is obtained by taking the span of
T (e1), . . . , T (en) where {e1, . . . , en} is any basis for F n, the domain. Indeed if we
choose the ei to be the standard basis vectors (with a 1 in the ith coordinate and
zeroes elsewhere), then T (ej) is simply the jth column of the matrix A. Thus
Im(T ) is the column space of A. However to determine the rank of A, we
would need to know which columns form a basis. We’ll get to that in a moment.

The nullspace of T , is the set of solutions to the homogeneous linear system
Ax = 0. You may recall that a standard method to deduce the solutions is to
put the matrix A in reduced echelon form. That means that all rows of zeros
are at the bottom, the leading nonzero entry of each row is a one, and in every
column containing a leading 1, all other entries are zero. These leading ones play
several roles.
Proposition 1.3.3

• Given the variables x1, . . . , xn in the system Ax = 0, a 1 in the jth column
of the reduced row echelon form of A, called a pivot, means that the
variable xj is a constrained variable while the remaining variables are
free variables. Thus if there are r pivots, there are n − r free variables,
and n− r = nullity(T ); it follows that r = rank(T ).

• The pivot columns of A (the columns of A in which there is a pivot in the
reduced row echelon form of A) can be taken as a basis of the column space
of A.

• The row rank of A (number of linearly independent rows) equals the
column rank of A (number of linearly independent columns).
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1.3.4 Elementary Row and Column operations
The following are a series of facts about elementary row and column operations
on an m× n matrix A.

• The matrix A is put in reduced row echelon form by a sequence of elemen-
tary row operations.

• Each elementary row operation can be achieved by left multiplication of
A (A 7→ EA) by an m×m elementary matrix.

• Each elementary column operation can be achieved by right multiplication
of A (A 7→ AE) by an n× n elementary matrix.

• Every elementary matrix is invertible and its inverse in again an elementary
matrix of the same type.

• The rank of an m× n matrix is unchanged by elementary row or column
operations, that is rank(EA) = rank(A) and rank(AE) = rank(A) for
appropriately sized elementary matrices E.

Every invertible matrix is a product of elementary matrices, and this leads
to the
Algorithm 1.3.4 To determine whether an n× n matrix A is invertible and if
so find its inverse, reduce to row-echelon form the ”augmented” n× 2n matrix

[A|In] 7→ [R|A′].

The matrix A is invertible if and only if R = In, and in that case A′ is the
inverse A−1.

Exercises

1. Let A be an m× n matrix and E an elementary matrix of the appropriate
size.

• Are the row spaces of A and EA the same?

• Are the column spaces of A and AE the same?

• If R is the reduced row-echelon form of A, are the nonzero rows of R
a basis for the row space of A?

• If R is the reduced row-echelon form of A, is the column space of R
the same as the column space of A?

Answer. yes; yes; yes (why?); no; If A =

[
1 1
1 1

]
, then R =

[
1 1
0 0

]
, and

Span(
[
1
1

]
) 6= Span(

[
1
0

]
)
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2. Given an m × n matrix A, show that there exist (appropriately sized) ele-
mentary matrices U, V so that UAV has the form

UAV =

[
Ir 0
0 0

]
.

where Ir is an r× r identity matrix with r = rank(A), and the other entries
are all zeros.
Note that when we work with modules over a PID instead of vector spaces

over a field, this construct leads to a diagonal matrix called the Smith
normal form of the matrix A.

1.4 Coordinates and Matrices

1.4.1 Coordinate Vectors
Let V be a finite-dimensional vector space over a field F with basis B = {v1, . . . , vn}.
Since B is a spanning set for V , every vector v ∈ V can be expressed as a linear
combination of the vectors in B: v = a1v1 + · · ·+ anvn with ai ∈ F.

And, since B is a linearly independent set, the coefficients ai are uniquely
determined. We record those uniquely determined coefficients as
Definition 1.4.1 The coordinate vector of v = a1v1+ · · ·+anvn with respect
to the basis B = {v1, . . . , vn} is denoted as the column vector:

[v]B =


a1
a2
...
an

 (1.4.1)

♢

1.4.2 Matrix of a linear map
Let V and W be two finite-dimensional vector spaces defined over a field F.
Suppose that dimV = n and dimW = m, and we choose bases B = {v1, . . . , vn}
for V, and C = {w1, . . . , wm} for W. By Theorem 1.1.6, any linear map T : V →
W is completely determined by the set of vectors {T (v1), . . . , T (vn)}, and since
C is a basis for W, for each index j, there are uniquely determined scalars aij ∈ F
with

T (vj) =
m∑
i=1

aijwi.

We record that data as a matrix A with Aij = aij. We define the matrix of
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T with respect to the bases B and C, as

[T ]CB = A = [aij] (1.4.2)
Example 1.4.2 The companion matrix of a polynomial. Let f = xn +
an−1x

n−1 + · · · + a0 be a polynomial with coefficients in a field F . Let V be
a finite-dimensional vector space over the field F with basis B = {v1, . . . , vn}.
Define a linear map T : V → V (called an endomorphism or linear operator
since the domain and codomain are the same vector space) by:

T (v1) = v2

T (v2) = v3
...

T (vn−1) = vn

T (vn) = −a0v1 − a1v2 − · · · − an−1vn−1.

The matrix of T with respect to the basis B is called the companion matrix
of f , and is given by

[T ]B := [T ]BB =


0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2

0 0
. . . 0

...
0 0 · · · 0 1 −an−1


One can show that both the minimal polynomial and characteristic poly-

nomial of this companion matrix is the polynomial f. The companion matrix is
an essential component in the rational canonical form of an arbitrary square
matrix A where the polynomials f that occur are the invariant factors associ-
ated to A. □
Observation 1.4.3 When constructing the matrix of a linear map, it is very
useful to recognize the connection with coordinate vectors. For example in con-
structing the matrix [T ]CB in (1.4.2), the jth column of the matrix is the coordi-
nate vector [T (vj)]C. Thus a mnemonic device for remembering how to construct
the matrix of a linear map is that

[T ]CB = A = [aij] =

 | | · · · |
[T (v1)]C [T (v2)]C · · · [T (vn)]C

| | · · · |

 . (1.4.3)

1.4.3 Matrix associated to a composition
Suppose that U, V, and W are vector spaces over a field F , and S : U → V and
T : V → W are linear maps. The the composition T ◦ S (usually denoted TS)
is a linear map, T ◦ S : U → W.
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Now suppose that all three vector spaces are finite-dimensional, say dimU =
n, dimV = p, and dimW = m, with bases BU ,BV ,BW . If we consider the
matrices of the corresponding linear maps, we see that the matrix sizes are

[S]BV
BU

is p× n

[T ]BW
BV

is m× p

[TS]BW
BU

is m× n

The fundamental result connecting these is
Theorem 1.4.4 Matrix of a composition.

[TS]BW
BU

= [T ]BW
BV

[S]BV
BU

(1.4.4)
This result will be of critical importance when we discuss change of basis.
As more or less a special case of the above theorem, we have the corresponding

result with coordinate vectors: that the coordinate vector of T (v) is the product
of the matrix of T with the coordinate vector of v. More precisely,
Corollary 1.4.5 With the notation as above, for v ∈ V

[T (v)]BW
= [T ]BW

BV
[v]BV

.

Example 1.4.6 Let V = P4(R) and W = P3(R) be the vector spaces of polyno-
mials with coefficients in R having degree less than or equal to 4 and 3 respec-
tively. Let D : V → W be the (linear) derivative map, D(f) = f ′, where f ′

is the usual derivative for polynomials. Let’s take standard bases for V and W,
namely BV = {1, x, x2, x3, x4} and BW = {1, x, x2, x3}. One computes:

[D]BW
BV

=


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4


Let f = 2+ 3x+ 5x3. We know of course that D(f) = 3 + 15x2, but we want to
see this with coordinate vectors. We know that

[f ]BV
=


2
3
0
5
0

 and [D(f)]BW
=


3
0
15
0


and verify that

[D(f)]BW
=


3
0
15
0

 = [D]BW
BV

[f ]BV
=


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4



2
3
0
5
0

 .

□
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1.4.4 Change of basis
A change of basis or change of coordinates is an enormously useful concept.
It plays a pivotal role in diagonalization, triangularization, and more generally in
putting a matrix into a canonical form. It’s practical uses are easy to envision.
We may think of the usual orthonormal basis of R3 along the coordinate axes
as the standard basis for R3, but when one want to create computer graphics
which projects the image of an object onto a plane, the natural frame includes
a direction parallel to the line of sight of the observer, so it defines a natural
basis for this application.

First, let’s understand what we are doing intuitively. Suppose our vector
space V = R3, and we have two bases for it with elements written as row vectors,
B1 = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} and B2 = {v1 = (1, 1, 1), v2 =
(0, 1, 1), v3 = (0, 0, 1)}.

Checkpoint 1.4.7 Is B2 really a basis? Let’s recall a useful fact that allows
us to quickly verify that B2 is actually a basis for R3. While in principle we
must check the set is both linearly independent and spans R3, since we know
the dimension of R3, and the set has 3 elements, it follows that either condition
implies the other.
Hint. To show B2 spans, it is enough to show that Span(B2) contains a span-
ning set for R3

Normally when we think of a vector in R3, we think of it as a coordinate vector
with respect to the standard basis, so that a vector we write as v = (a, b, c) is
really the coordinate vector with respect to the standard basis:

v = [v]B1 =

ab
c


The problem is when we want to find [v]B2 . For some vectors this is easy. For
example,

[v]B1 =

12
3

 is equivalent to [v]B2 =

11
1

 ,

or

[v]B1 =

13
6

 is equivalent to [v]B2 =

12
3

 ,

but what is going on in general?
Recall from Corollary 1.4.5, that for a linear transformation T : V → W ,

and v ∈ V that
[T (v)]BW

= [T ]BW
BV

[v]BV
.

In our current situation V = W and T is the identity transformation, T (v) = v,
which we shall denote by I, so that

[v]B2 = [I]B2
B1
[v]B1 .
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The matrix [I]B2
B1

is called the change of basis or change of coordinates
matrix (converting B1 coordinates to B2 coordinates), and these change of basis
matrices come in pairs

[I]B2
B1

and [I]B1
B2
.

Now in our case, both matrices are easy to compute:

[I]B2
B1

=

 1 0 0
−1 1 0
0 −1 1

 and [I]B1
B2

=

1 0 0
1 1 0
1 1 1

 ,

and it should come as no surprise that the columns of the second are just the
elements of the B2-basis in standard coordinates. But the nice part is that
the first matrix is related to the second affording a means to compute it when
computations by hand are not so simple.

Using Equation (1.4.4) on the matrix of a composition

[TS]BW
BU

= [T ]BW
BV

[S]BV
BU

,

with V = U = W , and T = S = I, we arrive at1 0 0
0 1 0
0 0 1

 = [I]B1
B1

= [I]B2
B1
[I]B1

B2
,

that is [I]B2
B1

and [I]B1
B2

are inverse matrices, and this is always the case.

Theorem 1.4.8 Given two bases B1 and B2 for a finite-dimensional vector space
V , the change of basis matrices [I]B2

B1
and [I]B1

B2
are inverse matrices.

Finally we apply this to the matrix of a linear map T : V → V on a finite-
dimensional vector space V with bases B1 and B2:
Theorem 1.4.9

[T ]B2 = [I]B2
B1
[T ]B1 [I]

B1
B2
.

Example 1.4.10 We often express the matrix of a linear map in terms of the
standard basis, but many times such a matrix is complicated and does not easily
reveal what the linear map is actually doing. For example, using our bases B1

and B2 for R3 given above, suppose we have a linear map T : R3 → R3 whose
matrix with respect to the standard basis B1 is

[T ]B1 =

 4 0 0
−1 5 0
−1 −1 6

 .

It is easy enough to compute the value of T on a given vector (recall from
equation (1.4.3), the columns of the above matrix are simply T (v1), T (v2), T (v3)
written with respect to the standard basis (B1) for R3).
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However, using Theorem 1.4.9, we compute

[T ]B2 =

4 0 0
0 5 0
0 0 6

 ,

which makes much clearer how the map T is acting on R3 (strecthing by a factor
of 4, 5, 6 in the directions of w1, w2, w3. □

1.5 Eigenvalues, eigenvectors, diagonalization

1.5.1 The big picture
Given a linear operator T : V → V on a finite-dimensional vector space V , T is
said to be diagonalizable if there exists a basis E = {v1, . . . , vn} of V so that
the matrix of T with respect to E is diagonal:

[T ]E =


λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 0 λn


where the λi are scalars in F , not necessarily distinct. A trivial example is the
identity linear operator which is diagonalizable with respect to any basis and its
matrix is the n× n identity matrix.

Note that the diagonal form of the matrix above encodes the information,
T (vi) = λivi for i = 1, . . . , n.

In general, given a linear map T : V → V on a vector space V over a field F ,
one can ask whether for a given scalar λ ∈ F , there exist nonzero vectors v ∈ V ,
so that T (v) = λv. If they exist, λ is called an eigenvalue of T, and v 6= 0 an
eigenvector for T corresponding to the eigenvalue λ. Thus T is diagonalizable
if and only if there is a basis for V consisting of eigenvectors for T.

While at first glance this may appear an odd notion, consider the case of
λ = 0. Asking for a nonzero vector v so that T (v) = 0v = 0 is simply asking
whether T has a nontrivial kernel.

Let’s look at several examples. Let U = R[x] be the vector space of all
polynomials with coefficients in R, and let V = C∞(R) be the vector space of
all functions which are infinitely differentiable. Note that U is a subspace of V .

Example 1.5.1 T : R[x] → R[x] given by T (f) = f ′. Let T : R[x] → R[x] be
the linear map which takes a polynomial to its first derivative, T (f) = f ′. Does
T have any eigenvectors or eigenvalues?

We must ask how is it possible that

T (f) = f ′ = λf

for a nonzero polynomial f?
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If λ 6= 0, there can be no nonzero f since the degrees of f ′ and λf differ by
one. So the only possibility left is λ = 0. Do we know any nonzero polynomials
f so that T (f) = f ′ = 0 · f = 0? Calculus tells us that the only solution to the
problem are the constant polynomials. Well maybe not so interesting, but still
instructive. □
Example 1.5.2 T : C∞(R) → C∞(R) given by T (f) = f ′. Next consider
T : C∞(R) → C∞(R) to be the same derivative map, but now on the vector
space V = C∞(R). We consider the same problem of finding scalars λ and
nonzero functions f so that

f ′ = λf.

Once again, calculus solves this problem completely as the functions f are
simply the solutions to the first order homogeneous linear differential equation
y′ − λy = 0, the solutions to which are all of the form f(x) = Ceλx. Note this
includes λ = 0 from the previous case. □
Example 1.5.3 S : C∞(R) → C∞(R) given by S(f) = f ′′. Finally consider
the map S : C∞(R) → C∞(R) given by S(f) = f ′′, the second derivative map, so
now we seek functions for which S(f) = f ′′ = λf, or in calculus terms solutions
to the second order homogeneous differential equation

y′′ − λy = 0.

This is an interesting example since the answer depends on the sign of λ. For
λ = 0, the fundamental theorem of calculus tells us that solutions are all linear
polynomials f(x) = ax+ b.

For λ < 0, we can write λ = −ω2. We see that sin(ωx) and cos(ωx) are eigen-
vectors for S with eigenvalue λ = −ω2. Indeed every eigenvector with eigenvalue
λ = −ω2 < 0 is a linear combination of these two.

For λ > 0, we write λ = ω2, we see that e±ωx are solutions and as above
every eigenvector with eigenvalue λ = ω2 > 0 is a linear combination of these
two. □

With a few examples under our belt, we return to the problem of finding a
systematic way to determine eigenvalues and eigenvectors. The condition T (v) =
λv is the same as the condition that (T −λI)v = 0, where I is the identity linear
operator (I(v) = v) on V. So let’s put

Eλ = {v ∈ V | T (v) = λv}.

Then as we just said, Eλ = ker(T − λI), so we know that Eλ is a subspace of V,
called the λ−eigenspace of T.

Since Eλ is a subspace of V, 0 is always an element, but T (0) = λ0 = 0 for
any λ which is not terribly discriminating, and our goal is to find a basis of the
space consisting of eigenvectors, so the zero vector must be excluded.

On a finite-dimensional vector space, finding the eigenvalues and a basis for
the corresponding eigenspace is rather algorithmic, at least in principle. Let A
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be the matrix of T with respect to any basis B (it does not matter which). Since
T (v) = λv if and only if

A[v]B = [T ]B[v]B = [T (v)]B = [λv]B = λ[v]B,

we can simply describe how to find eigenvalues of the matrix A.
So now we are looking for scalars λ for which there are nonzero vectors

v ∈ F n with Av = λv. As before, it is more useful to phrase this as seeking
values of λ for which (A − λIn) has a nontrivial kernel. But now remember
that (A − λIn) : F n → F n is a linear operator on F n, so it has a nontrivial
kernel if and only if it is not invertible, and invertibility can be detected with
the determinant. Thus Eλ 6= 0 if and only if det(A− λI) = 0.

Remark 1.5.4 Since for any n× n matrix B, det(−B) = (−1)n detB, we have
det(A − λIn) = 0 if and only if det(λIn − A) = 0. One of these expression
is more convenient for the theory, while the other one is more convenient for
computation.

Since we want to find all values of λ with det(λIn − A) = 0, we set the
problem up with a variable and define the function

χA(x) := det(xI − A).

One shows that χA is a monic polynomial of degree n, called the characteristic
polynomial of A. The roots of this polynomial are the eigenvalues of A, so the
first part of the algorithm is to find the roots of the characteristic polynomial.
In particular, an n×n matrix can have at most n eigenvalues in F, counted with
multiplicity.

Now for each eigenvalue λ, there is a corresponding eigenspace, Eλ which is
the kernel of λIn−A, or equivalently of A−λIn. Finding the kernel is simply find-
ing the solutions for the system of homogeneous linear equations (A−λIn)X = 0,
which one can easily do via row reduction.

1.5.2 Taking stock of where we are
• Given a matrix A ∈ Mn(F ), we consider the characteristic polynomial

χA(x) = det(xI − A) which is a monic polynomial of degree n in F [x].
When F = C (or any algebraically closed field), χA is guaranteed to have
all of its roots in F, but not so otherwise. For example, if F = R and

A =

[
0 1

−1 0

]
, B =

 4 0 0
0 0 1
0 −1 0

 , and C =

4 0 0
0 0 1
0 1 0

 ,

then χA(x) = x2+1 and χB(x) = (x−4)(x2+1), so neither A nor B has all
its eigenvalues in F = R. On the other hand, χC(x) = (x−4)(x−1)(x+1)
does have all its eigenvalues in F.
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• So in the general case, a matrix A ∈ Mn(F ) will have a characteristic
polynomial χA exhibiting a factorization of the form:

χA(x) = (x− λ1)
m1 · · · (x− λr)

mrq(x),

where either q(x) is the constant 1 or is a polynomial of degree ≥ 2 with no
roots in F. It will follow that if q(x) 6= 1, then A cannot be diagonalized,
though something can still be said.

• Let’s assume that

χA(x) = (x− λ1)
m1 · · · (x− λr)

mr ,

with λ1, . . . , λr the distinct eigenvalues of A in F. The exponents mi are
called the algebraic multiplicities of the corresponding eigenvalues.
By comparing degrees, we see that

n = m1 + · · ·+mr.

Moreover since the λk are roots of the characteristic polynomial, we know
that det(A− λkI) = 0, which guarantees that Eλk

6= {0}. Indeed, it is not
hard to show that

1 ≤ dimEλk
≤ mk, for k = 1, . . . , r. (1.5.1)

Another important result is the
Proposition 1.5.5 Suppose that the matrix A has distinct eigenvalues λ1, . . . , λr,
and that the eigenspace Eλk

has basis Bk, k = 1, . . . , r. Then B = B1∪B2∪· · ·∪Br

is a linearly independent set.
Now recall that a linear operator T : V → V (resp. square matrix A ∈

Mn(F )) is diagonalizable if and only if there is a basis of V (resp. F n) con-
sisting of eigenvectors for T . From the proposition above, the largest linearly
independent set of eigenvectors which can be constructed has size

|B| = dimEλ1 + · · ·+ dim(Eλr)

≤ m1 + · · ·+mr = n = dimV.

We summarize our results as
Theorem 1.5.6 Diagonalizability criterion. A matrix A ∈ Mn(F ) is diag-
onalizable if and only if

• The characteristic polynomial χA factors into linear factors over F :

χA(x) = (x− λ1)
m1 · · · (x− λr)

mr

with the λi distinct, and

• dimEλi
= mi, for i = 1, . . . , r.
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Corollary 1.5.7 A sufficient condition for diagonalizability. Suppose
the matrix A ∈ Mn(F ) has characteristic polynomial which factors into distinct
linear factors over F :

χA(x) = (x− λ1) · · · (x− λn)

with the λi distinct. Then A is diagonalizable.

Proof. We know that there are n eigenspaces each with dimension at least one
which gives at least n linearly independent eigenvectors. As F n is n-dimensional,
these form a basis for the space, so A is diagonalizable. ■

1.5.3 An alternate characterization of diagonalizable
We want to make sense of an alternate definition that an n × n matrix A ∈
Mn(F )is diagonalizable if there is an invertible matrix P ∈ Mn(F ), so that
D = P−1AP is a diagonal matrix. Recall that in this setting we say that the
matrix A is similar to a diagonal matrix.

Suppose that the matrix A is given to us as the matrix of a linear trans-
formation T : V → V with respect to a basis B for V , A = [T ]B. Now T is
diagonalizable if and only if there is a basis E of V consisting of eigenvectors for
T. We know that [T ]E is diagonal. But we recall from Theorem 1.4.9 that

[T ]E = [I]EB[T ]B[I]
B
E = P−1AP,

where P = [I]BE is the invertible matrix. Also note that when B is a standard ba-
sis, the columns of P = [I]BE are simply the coordinate vectors of the eigenvector
basis E . This is quite a mouthful, so we should look at some examples.

Example 1.5.8 A simple example to start. Let A =

5 6 0
0 5 8
0 0 9

. Then

χA(x) = (x−5)2(x−9), so we have two eigenvalues 5 and 9. We need to compute
the corresponding eigenspaces.

For each eigenvalue λ, we compute ker(A− λI3), that is find all solutions to
(A− λI3)x = 0.

A− 9I =

 −4 6 0
0 −4 8
0 0 0

 RREF7→

 1 0 −3
0 1 −2
0 0 0

 ,

so E9(A) = ker(A− 9I) = Span


 3

2
1

. Similarly,

A− 5I =

 0 6 0
0 0 8
0 0 4

 RREF7→

 0 1 0
0 0 1
0 0 0

 ,
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so E5(A) = ker(A− 5I) = Span


 1

0
0

.

But


 3

2
1

 ,

 1
0
0

 is not a basis for R3, so A is not diagonalizable. □

Remark 1.5.9 It is important to note in the example above that if we simply
wanted to know whether A is diagonalizable or not, we did not have to do all of
this work. Diagonalizability is possible if and only if the algebraic multiplicity
of each eigenvalue equals the dimension of the corresponding eigenspace. An
eigenvalue with algebraic multiplicity one (a simple root of χA) will always have a
one-dimensional eigenspace, so the issue for us was discovering that dimE5(A) =
1 while the algebraic multiplicity of λ = 5 is 2.

Example 1.5.10 A more involved example. Let A =


3 0 2 0
1 3 1 0
0 1 1 0
0 0 0 4

 .

Think of A as A = [T ]B, the matrix of the linear transformation T : R4 → R4

with respect to the standard basis B of R4. Then A has characteristic polynomial
χA(x) = x4 − 11x3 + 42x2 − 64x+ 32 = (x− 1)(x− 2)(x− 4)2.

We know that the eigenspaces E1 and E2 will each have dimension one, so
are no obstruction to diagonalizability, but since we want to do a bit more with
this example, we compute bases for the eigenspaces. If we let Eλ denote a basis
for the eigenspace Eλ = ker(A − λI), then as in the previous example via row

reduction, we find E1 =

v1 =


1
0

−1
0


 and E2 =

v2 =


2

−1
−1
0


.

By Equation (1.5.1), we know that 1 ≤ dimE4 ≤ 2. If the dimension is
1, then A is not diagonalizable. As it turns out the dimension is 2, and E4 =

{v3, v4} =




2
3
1
0

 ,


0
0
0
1


 is a basis for E4.

Let E = E1 ∪ E2 ∪ E4 = {v1, v2, v3, v4} be the basis of eigenvectors. Then

D = [T ]E =


1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 4

 = P−1AP,
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where

P = [I]BE =


1 2 2 0
0 −1 3 0

−1 −1 1 0
0 0 0 1

 .

Note how the columns of P are the (coordinate vectors of) the eigenvector basis.
□

1.6 Minimal and characteristic polynomials
We review a few important facts about minimal and characteristic polynomials.

1.6.1 Annihilating polynomials
Let A ∈ Mn(F ) be a square matrix. One can ask if there is a nonzero polynomial
f(x) = amx

m + · · ·+ a0 ∈ F [x] for which f(A) = amA
m + · · ·+ a1A+ a0In = 0,

the zero matrix. If we think of trying to find a polynomial, this may seem a
challenging task.

However, if we consider that Mn(F ) is a vector space of dimension n2, then
Theorem 1.1.2 tells us that the set

{In, A,A2, . . . , An2}

must be a linearly dependent set, and that means there are scalars a0, a1, . . . , an2 ∈
F , not all zero, for which an2An2

+ · · · + a1A + a0In = 0, so that f(x) =
an2xn2

+ · · ·+ a0 is one nonzero polynomial which annihilates A.

1.6.2 The minimal polynomial
Given a matrix A ∈ Mn(F ), we have seen there is a nonzero polynomial which
annihilates it, so we consider the set

J = {f ∈ F [x] | f(A) = 0}.

In the language of abstract algebra, J is an ideal in the polynomial ring
F [x], and since F is a field, F [x] is a PID (principal ideal domain), the ideal
J is principally generated: J = 〈µA〉, where µA is the monic generator of this
ideal. In less technical terms, µA is the monic polynomial of least degree which
annihilates A, and every element of J is a (polynomial) multiple of µA. The
polynomial µA is called the minimal polynomial of the matrix A.

A more constructive version of finding the minimal polynomial comes from
the observation that if f, g ∈ J , that if f(A) = g(A) = 0, then h(A) = 0, where
h is the greatest common divisor gcd, of f and g. In particular, if f(A) = 0, then
µA must divide f , so if we can factor f, there are only finitely many possibilities
for µA.
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Example 1.6.1 A8 = In. Let’s suppose that A ∈ Mn(Q) and A8 = In. This
means that f(x) = x8−1 is a polynomial which annihilates A, so µA must divide
it. Over Q, we have the following factorization into irreducibles:

x8 − 1 = Φ8Φ4Φ2Φ1 = (x4 + 1)(x2 + 1)(x+ 1)(x− 1),

where (for those with abstract algebra background) the Φd are the dth cyclotomic
polynomials defined recursively as an (irreducible) factorization over Q by

xn − 1 =
∏
d|n

Φd.

Thus Φ1 = (x−1), x2−1 = Φ1Φ2, so Φ2 = x+1, and x8−1 has the factorization
given above. □

1.6.3 The characteristic polynomial
Given a matrix A ∈ Mn(F ), we have seen that there is a polynomial of degree at
most n2 which annihilates A, and given one such nonzero polynomial there is one
of minimal degree. But the key to finding a minimal polynomial is obtaining
at least one. The idea of trying to find a linear dependence relation among
In, A,A

2, . . . , An2 is far from appealing, but fortunately there is a polynomial we
have used before which annhilates A.

Theorem 1.6.2 Cayley-Hamilton. Let A ∈ Mn(F ), and χA(x) = det(xIn −
A) be its characteristic polynomial. Then χA(A) = 0, that is χA is a monic
polynomial of degree n which annihilates A.

In particular, the minimal polynomial, µA, divides the characteristic polyno-
mial, χA.

Example 1.6.3 Are there any elements of order 8 in GL3(Q)? The
question asks whether there is an invertible 3 × 3 matrix A so that 8 is the
smallest positive integer k with Ak = I3.

Since A8 = I3, we know detA 6= 0, so such a matrix will necessarily be
invertible, hence an element of GL3(Q). In the example above, we saw that any
matrix which satisfies A8 = I3 must have minimal polynomial µA which divides
x8 − 1 = (x4 + 1)(x2 + 1)(x+ 1)(x− 1). But the Cayley-Hamilton theorem tells
us that µA must also divide the characteristic polynomial χA which must have
degree 3, and the only way to create a polynomial of degree 3 with the factors
listed above is to have χA | x4−1, which forces A4 = I3, so there are no elements
of order 8 in GL3(Q). □

On the other hand,

A =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0
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has µA = χA = x4+1, so A is an element of order 8 in GL4(Q). The matrix A is
the companion matrix to the polynomial x4 + 1. See Example 1.4.2 for more
detail.

1.7 Some Sage examples
Here are some common uses of Sage with linear algebra applications.

1.7.1 Row reduction, echelon form, kernel, column space
A random 4×5 rational matrix with rank 3. Note that while every matrix has a
reduced row echelon form, this algorithm will generate a matrix of a desired size
and rank, over a desired ring, whose reduced row-echelon form has only integral
values.

%display latex
latex.matrix_delimiters("[", "]")
A=random_matrix(QQ ,4,5, algorithm= ' echelonizable ' , rank=3,

upper_bound =10); A

The example below was chosen so that the pivots were not all in the first
three columns.

%display latex
latex.matrix_delimiters("[", "]")
A = matrix(QQ ,4,5,[[0 ,0 , 0 , 1 , 1],
[0 , 0 , 1 , 2 , 5],
[-1 , 5 , 0 , 6 , 8 ],
[0 , 0 , 1 , -1 , 2]]); A

It’s reduced row echelon form which allows us to confirm the rank and make
it easier to find the kernel.

A.echelon_form ()

The kernel or nullspace of the matrix, {x ∈ Q5 | Ax = 0}, written as row
vectors.

A.right_kernel ()

The column space of the matrix: a basis of column space written as row
vectors; note they are the pivot columns.

[A.column(i) for i in A.pivots ()]
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The following is simply a basis for the column space of A written as row
vectors. Note that this is the reduced row-echelon form of the matrix formed
from the rows above: A matrix and its RREF have the same row space.

A.column_space ()

1.7.2 Eigenvalues, eigenvectors, and diagonalization
Generate a diagonalizable 8× 8 integer matrix.

%display latex
latex.matrix_delimiters("[", "]")
B=random_matrix(ZZ ,8,8, algorithm= ' diagonalizable ' )
B

Compute the characteristic polynomial and factor it. The characteristic poly-
nomial will necessarily factor into linear factors. To make things more interesting,
run the Sage script until you get a characteristic polynomial with some algebraic
multiplicities greater than one.

B.characteristic_polynomial ().factor ()

Compute the eigenvalues and bases for the corresponding eigenspaces. The
output is a list giving each eigenvalue and a basis for the corresponding eigen-
space. Watch for these to show up as the columns of the change of basis matrix.

B.eigenspaces_right ()

Another way of getting the same data

B.eigenvectors_right ()

The diagonalized matrix D = P−1BP where P is the change of basis matrix
whose columns are the eigenvectors spanning the eigenspaces.

B.eigenmatrix_right ()

1.7.3 Rational and Jordan canonical forms
Example slightly modified from the Sage Reference Manual1.

%display latex
latex.matrix_delimiters("[", "]")
C=matrix(QQ ,8,[[0,-8,4,-6,-2,5,-3,11], \

1doc.sagemath.org/pdf/en/reference/matrices/matrices.pdf

https://doc.sagemath.org/pdf/en/reference/matrices/matrices.pdf
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[-2,-4,2,-4,-2,4,-2,6], [5, 14, -7, 12, 3,-8,6,-27], \
[-3,8,7,-5,0,2,6,17], [0,5,0,2,4, -4, 1, 2], \
[-3, -7, 5, -6, -1, 5, -4, 14], \
[6, 18, -10, 14, 4, -10, 10, -28], \
[-2, -6, 4, -5, -1, 3, -3, 13]]);C

We see the factored characteristic polynomial is divisible by a quadratic which
is irreducible over Q, so the matrix will have a rational canonical form, but not
a Jordan form over Q.

C.characteristic_polynomial ().factor ()

Here is the minimal polynomial, the largest of the invariant factors.

m=C.minimal_polynomial ()
m,m.factor ()

Here is a list of the invariant factors, given as a lists of coefficients of the
polynomials they represent.

C.rational_form(format= ' invariants ' )

Here we turn those lists into polynomials. The rational canonical form is a
block diagonal matrix with each block being the companion matrix.

invariants=C.rational_form(format= ' invariants ' )
R=PolynomialRing(QQ, ' x ' )
[R(p).factor () for p in invariants]

The matrix C is not diagaonalizable over any field since the minimal polyno-
mial has a multiple root.

C.rational_form(format= ' right ' )

Since the minimal(characteristic) polynomial has an irreducible quadratic
factor, we need to extend the field Q to a quadratic extension which contains a
root in order to produce a Jordan form.

K.<a>= NumberField(x^2+6*x-20);K

Now C has a Jordan canonical form over the field K.

C.jordan_form(K)

%display latex
latex.matrix_delimiters("[", "]")
D=matrix(QQ ,8,[[0,-8,4,-6,-2,5,-3,11], \
[-2,-4,2,-4,-2,4,-2,6], [5, 14, -7, 12, 3,-8,6,-27], \
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[-3,-8,7,-5,0,2,-6,17], [0,5,0,2,4, -4, 1, 2], \
[-3, -7, 5, -6, -1, 5, -4, 14], \
[6, 18, -10, 14, 4, -10, 10, -28], \
[-2, -6, 4, -5, -1, 3, -3, 13]]);D

Example taken from the Sage Reference Manual2, has all invariant factors a
power of (x− 2).

D.characteristic_polynomial ().factor ()

m=D.minimal_polynomial ()
m,m.factor ()

invariants=D.rational_form(format= ' invariants ' )
R=PolynomialRing(QQ, ' x ' )
[R(p).factor () for p in invariants]

D.rational_form(format= ' right ' )

D.jordan_form ()

1.8 Exercises (with solutions)

Exercises
1. Let H be the subset of R4 defined by

H =




x1

x2

x3

x4

 : x1 + x2 + x3 + x4 = 0

 .

Either show that H is a subspace of R4, or demonstrate how it fails to
have a necessary property.
Solution. The easiest way to show that H is a subspace is to note that
it is the kernel of a linear map. Let A be the 1 × 4 matrix A = [1 1 1 1].
Then

H = {x ∈ R4 | Ax = 0},

is the nullspace of A, which is always a subspace.
Alternatively of course you could check that 0 is in the set and that it

is closed under addition and scalar multiplication.

2doc.sagemath.org/pdf/en/reference/matrices/matrices.pdf

https://doc.sagemath.org/pdf/en/reference/matrices/matrices.pdf
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2. Suppose that T : R3 → R3 is a linear map satisfying

T

 3
0
0

 =

 6
−3
6

 , T

 1
1
0

 =

 2
0
1

 , and T

 0
0
2

 =

 4
6
2

 .

(a) If the standard basis for R3 is E = {e1, e2, e3}, determine

T (e1), T (e2), and T (e3).

Solution. Using linearity, we are given T (3e1) = 3T (e1) =

 6
−3
6

 ,

so T (e1) =

 2
−1
2

 .

We are given T (e1 + e2) = T (e1) + T (e2) =

 2
0
1

 , so

T (e2) = T (e1 + e2)− T (e1) =

 2
0
1

−

 2
−1
2

 =

 0
1

−1

 .

Finally, T (2e3) =

 4
6
2

 , so T (e3) =

 2
3
1

 .

(b) Find T

 1
1
1

 .

Solution. We compute

T

 1
1
1

 = T (e1) + T (e2) + T (e3) =

 4
3
2

 .

3. Consider the upper triangular matrix

A =

 1 x z
0 1 y
0 0 1

 ,

with x, y, z ∈ R.

(a) Give as many reasons as you can that shows the matrix A is invertible.
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Solution. We see that A is already in echelon (not RREF) form,
which tells us there is a pivot in each column. Since there are only
three variables the system Ax = 0 has only the trivial solution, to the
linear map x 7→ Ax is injective. Three pivots also means the column
space is spanned by three independent vectors, so is all of R3. So the
linear map is bijective, hence invertible.
One could also say that since the RREF of A is the identity matrix,
it is invertible.
If you know about determinants, you could say the determinant equals
1, hence is nonzero, which means A is invertible.

(b) Find the inverse of the matrix A.

Solution. We row-reduce 1 x z 1 0 0
0 1 y 0 1 0
0 0 1 0 0 1

 7→

 1 x 0 1 0 −z
0 1 0 0 1 −y
0 0 1 0 0 1


7→

 1 0 0 1 −x −z + xy
0 1 0 0 1 −y
0 0 1 0 0 1

 .

So

A−1 =

 1 −x −z + xy
0 1 −y
0 0 1

 .

4. Consider the linear transformation T : R5 → R4 given by T (x) = Ax where
A and its reduced row-echelon form R are given by:

A =


1 −1 2 6 −3
2 −1 0 7 10

−2 3 −7 −15 17
2 −2 2 8 5

 and R =


1 0 0 5 0
0 1 0 3 0
0 0 1 2 0
0 0 0 0 1

 .

(a) Determine kerT , the kernel of T.

Solution. The kernel of T is the nullspace of A, which we know is
the same as the nullspace of R which we can read off:

x1

x2

x3

x4

x5

 =


−5x4

−3x4

−2x4

x4

0

 = x4


−5
−3
−2
1
0


(b) Determine ImT , the image of T.
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Solution. Depending upon what you already know, you could ob-
serve that the RREF R has a pivot in each row which means the
columns of A span all of R4.

Or you may know that looking at R tells us there are four pivot
columns in A, meaning the column space is spanned by 4 linearly
independent vectors, hence the image is all of R4.
Or, if you have already learned the rank-nullity theorem, then from
the previous part we would know the nullity is one, and so rank-nullity
says the rank is 5− 1 = 4, so the image is a dimension 4 subspace of
R4, which is all of R4.

5. Let K be the set of solutions in R5 to the homogeneous linear system

x1 + x2 + x3 + x4 = 0

x5 = 0.

(a) Find a basis B0 for K.

Solution. The coefficient matrix for the system is

A =

[
1 1 1 1 0
0 0 0 0 1

]
which is already in reduced row-echelon form. We see there are two
pivots, hence 3 free variables, meaning dimK = 3. By inspection (or
working out the details of finding all solutions), one finds a basis can
be taken to

B0 =

v1 =


−1
1
0
0
0

 , v2 =


−1
0
1
0
0

 , v3 =


−1
0
0
1
0


 .

(b) Extend the basis B0 from the previous part to a basis B for all of R5.

Solution. To extend a linearly independent set, one must add some-
thing not in the original span (see Theorem 1.1.4). There are many
correct answers possible, but the vectors

v4 =


1
1
1
1
0

 and v5 =


0
0
0
0
1


are clearly not in K since v4 does not satisfy the first defining equation,
and v5 does not satisfy the second. So thinking algorithmically, B0 ∪



CHAPTER 1. A QUICK REVIEW OF A FIRST COURSE 31

{v4} is linearly independent, and v5 is certainly not in the span of
those four vectors since their last coordinates are all zero. Thus we
may take (as one possible solution)

B = B0 ∪ {v4, v5}.

(c) Define a linear transformation T : R5 → R5 with kernel K and image
equal to the set of all vectors with x3 = x4 = x5 = 0.

Solution. By Theorem 1.1.6, a linear map is uniquely defined by
its action on a basis. It should be clear that the desired image is
defined by the standard basis vectors e1 and e2. So with the given
basis B = {v1, . . . , v5}, we must have

T (vi) = 0, for i = 1, 2, 3,

and T (v4), T (v5) linearly independent vectors in the image, say

T (v4) = e1 and T (v5) = e2.

6. Let M2×2 be the vector space of 2 × 2 matrices with real entries, and

fix a matrix A =

[
a b
c d

]
∈ M2×2. Consider the linear transforma-

tion T : M2×2 → M2×2 defined by T (X) = AX, which (left) multi-
plies an arbitrary 2 × 2 matrix X by the fixed matrix A. Let E ={

e1 =
[
1 0
0 0

]
, e2 =

[
0 1
0 0

]
, e3 =

[
0 0
1 0

]
, e4 =

[
0 0
0 1

]}
be a basis

for M2×2.

(a) Find the matrix of T with respect to the basis E , that is [T ]E .

Solution.

T (e1) =
[
a b
c d

] [
1 0
0 0

]
=

[
a 0
c 0

]
= ae1 + ce3

T (e2) =
[
a b
c d

] [
0 1
0 0

]
=

[
0 a
0 c

]
= ae2 + ce4

T (e3) =
[
a b
c d

] [
0 0
1 0

]
=

[
b 0
d 0

]
= be1 + de3

T (e4) =
[
a b
c d

] [
0 0
0 1

]
=

[
0 b
0 d

]
= be2 + de4

We now simply record the data as coordinate vectors:

[T ]E =


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d
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(b) Now let B be the basis, B = {e1, e3, e2, e4}, that is, the same elements
as E , but with the second and third elements interchanged. Write
down the appropriate change of basis matrix, [I]EB, and use it to com-
pute the matrix of T with respect to the basis B, that is [T ]B.

Solution. The change of basis matrices [I]EB =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

[I]BE , so

[T ]B = [I]BE [T ]E [T ]
E
B

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


a b 0 0
c d 0 0
0 0 a b
0 0 c d

 .

Of course it was possible to write down [T ]B simply from the informa-
tion in part (a).

7. Write down an explicit linear transformation T : R2 → R3 that has as its
image the plane x− 4y + 5z = 0. What is the kernel of T?
Hint. Any linear transformation T : Rn → Rm has the form T (x) = Ax
where A is the matrix for T with respect to the standard bases. How is the
image of T related to the matrix A?
Solution. We know that T can be given by T (x) = Ax where A is the
3×2 matrix whose columns are T (e1) and T (e2). They must span the given

plane, so for example, A =

 4 −5
1 0
0 1

 will do.

By rank-nullity, the kernel must be trivial.
8. Let A ∈ Mn(R) which is invertible. Show that the columns of A form a

basis for Rn.

Solution. Since A is invertible, we know that we can find its inverse by
row reducing the augmented matrix

[A|In] 7→ [In|A−1].

In particular, this says that the RREF form of A is In.
One way to finish is that the information above says that Ax = 0 has

only the trivial solution, which means that the n columns of A are linearly
independent. Since there are n = dimRn of them, by Theorem 1.1.3, they
must be a basis.

Another approach is that the linear map T : Rn → Rn given by T (x) =
Ax is an isomorphism with the inverse map being given x 7→ A−1x. In
particular, T is surjective and its image is the column space of A. That
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means that the n columns of A span all of Rn, and hence must be a basis
again by Theorem 1.1.3.

9. Consider the vector space M2(R) of all 2 × 2 matrices with real en-
tries. Let’s consider a number of subspaces and their bases. Let E =
{E11, E12, E21, E22} = {[ 1 0

0 0 ], [
0 1
0 0 ], [

0 0
1 0 ], [

0 0
0 1 ]} be the standard basis for

M2(R).

(a) Define a map T : M2(R) → R by

T

([
a b
c d

])
= a+ d.

The quantity a + d (the sum of the diagonal entries) is called the
trace of the matrix. You may assume that T is a linear map. Find a
basis for its kernel, K.

Solution. It is easy to see that T is a surjective map, so by the
rank-nullity theorem, dimK = 3. Extracting from the standard basis,
we see that E12, E21 ∈ K so are part of a basis for K. We just need
to add one more matrix which is not in the span of the two chosen
basis vectors.

Certainly, the matrix must have the form
[
a b
c −a

]
, and we need

a 6= 0, otherwise our matrix is in the span of the other two vectors.
But once we realize that, we may as well assume that b = c = 0, so
that

[
1 0
0 −1

]
is a nice choice, and since it is not in the span of the

other two, adding it still gives us an independent set.

(b) Now let’s consider the subspace S consisting of all symmetric matrices,
those for which AT = A. It should be clear this is a proper subspace,
but what is its dimension. Actually finding a basis helps answer that
question.

Hint. If you don’t like the “brute force” force of the tack of the
solution, you could take the high road and consider the space of skew-
symmetric matrices, those for which AT = −A. It is pretty easy
to determine its dimension and then you can use the fact that every
matrix can be written as the sum of symmetric and skew-symmetric
matrix to tell you the dimension of S.

A =
1

2
(A+ AT ) +

1

2
(A− AT ).

Solution. Once again, it is clear that some elements of the stan-
dard basis are in S, like E11, E22. Since it is a proper subspace, its
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dimension is either 2 or 3, and a few moments thought convinces you
that [

0 1
1 0

]
= E12 + E21

is symmetric, not in the span of the other two, so forms an indepen-
dent set in S. So dimS = 3, this must be a basis for S.

(c) Now K ∩ S is also a subspace of M2(R). Can we find its dimension.

Solution. Once again, it is useful to know the dimension of the
space. Certainly it is at most 3, but then not every symmetric matrix
has zero trace, so it is at most two. Staring at the bases for each of
S and K separately, we see that both[

0 1
1 0

]
and

[
1 0
0 −1

]
are in the intersection and are clearly linearly independent, so they
must be a basis.

(d) Extend the basis you found for K ∩ S to bases for S and for K.

Solution. Since dim(K ∩ S) = 2, we need only find one matrix not
in their span to give a basis for either K or S. For K, we could choose
E12, and for S we could choose E11. Knowing the dimension is clearly
a powerful tool since it tells you when you are done.

10. The matrix B =

 1 4 −7
−3 −11 19
−1 −9 18

 is invertible with inverse B−1 = −27 −9 −1
35 11 2
16 5 1

. Since the columns of B are linearly independent, they

form a basis for R3 :

B =


 1

−3
−1

 ,

 4
−11
−9

 ,

 −7
19
18

 .

Let E be the standard basis for R3.

(a) Suppose that a vector v ∈ R3 has coordinate vector [v]B =

 1
2
3

 .

Find[v]E .
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Solution. The matrix B is the change of basis matrix [I]EB so

[v]E = [I]EB[v]B =

 1 4 −7
−3 −11 19
−1 −9 18

 1
2
3

 =

 −12
32
35


(b) Suppose that T : R3 → R3 is the linear map given by T (x) = Ax

where

A = [T ]E =

 1 2 3
4 5 6
7 8 9

 .

Write down an appropriate product of matrices which equal [T ]B.

Solution. By Theorem 1.4.9

[T ]B = [I]BE [T ]E [I]
E
B = B−1AB.

11. Let W be the subspace of M2(R) spanned by the set S, where

S =

{[
0 −1

−1 1

]
,

[
1 2
2 3

]
,

[
2 1
1 9

]
,

[
1 −2

−2 4

]}
.

(a) Use the standard basis B = {E11, E12, E21, E22} for M2(R) to express
each element of S as a coordinate vector with respect to the basis B.

Solution. We write the coordinate vectors as columns of the matrix:
0 1 2 1

−1 2 1 −2
−1 2 1 −2
1 3 9 4

 .

(b) Determine a basis for W.

Hint. By staring at the matrix, it is immediate that that rank is at
most 3. What are the pivots?

Solution. We start a row reduction:

A 7→


0 1 2 1

−1 2 1 −2
1 3 9 4
0 0 0 0

 7→


1 3 9 4
0 1 2 1

−1 2 1 −2
0 0 0 0



7→


1 3 9 4
0 1 2 1
0 5 10 2
0 0 0 0

 7→


1 3 9 4
0 1 2 1
0 0 0 −3
0 0 0 0

 .

Thus the pivot columns are the first, second, and fourth, so we may
take the first, second and fourth elements of S as a basis for W.
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12. Let A =

 1 2 3
1 2 3
1 2 3

.

(a) Compute the rank and nullity of A.

Solution. Too easy! It is obvious that the rank is 1 since all columns
are multiples of the first. Rank-nullity tells us that the nullity is
3− 1 = 2.

(b) Compute A

 1
1
1

, and use your answer to help conclude (without

computing the characteristic polynomial) that A is diagonalizable.

Solution. A

 1
1
1

 =

 6
6
6

 = 6

 1
1
1

 , which means that 6 is a

eigenvalue for A, and

 1
1
1

 is an eigenvector.

The nullity is 2, which means that 0 is an eigenvalue and that the
eigenspace corresponding to 0 (the nullspace of A) has dimension 2,
so that there exists a basis of R3 consisting of eigenvectors. Recall
that by Proposition 1.5.5 the eigenvectors from different eigenspaces
are linearly independent.

(c) Determine the characteristic polynomial of A from what you have
observed.

Solution. χA(x) = x2(x − 6). There are two eigenvalues, 0 and 6,
and since the matrix is diagonalizable the algebraic multiplicities to
which they occur equal their geometric multiplicities (i.e., the dimen-
sion of the corresponding eigenspaces), see Theorem 1.5.6.

(d) Determine a matrix P so that 6 0 0
0 0 0
0 0 0

 = P−1AP.

Solution. We already know that

 1
1
1

 is an eigenvector for the

eigenvalue 6, and since 6 occurs as the first entry in the diagonal
matrix, that should be the first column of P.
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To find a basis of eigenvectors for the eigenvalue 0, we need to find the
nullspace of A. It is immediate to see that the reduced row-echelon
form of A is

R =

 1 2 3
0 0 0
0 0 0

 ,

which tells us the solutions are x1

x2

x3

 =

 −2x2 − 3x3

x2

x3

 = x2

 −2
1
0

+ x3

 −3
0
1

 .

We may choose either of those vectors (or some linear combinations
of them) to fill out the last columns of P. So one choice for P is

P =

 1 −2 −3
1 1 0
1 0 1

 .

13. Let E1 = {E11, E12, E21, E22} = {[ 1 0
0 0 ], [

0 1
0 0 ], [

0 0
1 0 ], [

0 0
0 1 ]} be the standard

basis for M2(R), and E2 = {1, x, x2, x3} the standard basis for P3(R). Let
T : M2(R) → P3(R) be defined by

T ([ a b
c d ]) = 2a+ (b− d)x− (a+ c)x2 + (a+ b− c− d)x3.

(a) Find the matrix of T with respect to the two bases: [T ]E2E1 .

Solution. The columns of the matrix [T ]E2E1 are the coordinate vec-
tors [T (Eij)]E2 , so

[T ]E2E1 =


2 0 0 0
0 1 0 −1

−1 0 −1 0
1 1 −1 −1

 .

(b) Determine the rank and nullity of T.

Solution. It is almost immediate that the first three columns of the
matrix are pivot columns (think RREF), so the rank is at least three.
Then we notice that the last column is a multiple of the second, which
means the rank is at most three. Thus rank is 3 and nullity is 1.

(c) Find a basis of the image of T.

Solution. The first three columns of [T ]E2E1 are a basis for the column
space of the matrix, but we recall that they are coordinate vectors
and the codomain is P3(R), so a basis for the image is:

{2− x2 + x3, x+ x3,−x2 − x3}.
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(d) Find a basis of the kernel of T.

Solution. Since

T ([ a b
c d ]) = 2a+ (b− d)x− (a+ c)x2 + (a+ b− c− d)x3,

we must characterize all matrices which yield the zero polynomial.
We quickly deduce we must have

a = c = 0, and b = d,

so one can choose [ 0 1
0 1 ] as a basis for the kernel.

14. Let V be a vector space with basis B = {v1, . . . , v4}. Define a linear trans-
formation by

T (v1) = v2, T (v2) = v3, T (v3) = v4, T (v4) = av1 + bv2 + cv3 + dv4.

(a) What is the matrix of T with respect to the basis B?

Solution. [T ]B =


0 0 0 a
1 0 0 b
0 1 0 c
0 0 1 d

 .

(b) Determine necessary and sufficient conditions on a, b, c, d so that T is
invertible.

Hint. What is the determinant of T , or what happens when you
row reduce the matrix?

Solution. The determinant of the matrix is −a, so T is invertible
if and only if a 6= 0. The values of b, c, d do not matter.

(c) What is the rank of T and how does the answer depend upon the
values of a, b, c, d?

Solution. With one elementary row operation, we reduce the origi-

nal matrix to


1 0 0 b
0 1 0 c
0 0 1 d
0 0 0 a

 which is in echelon form. If a = 0, the

rank is 3, otherwise it is 4.
15. Define a map T : Mm×n(R) → Rm as follows: For A = [aij] ∈ Mm×n(R),

define T (A) =


b1
b2
...
bm

 where bk =
∑n

j=1 akj, that is, bk is the sum of all the

elements in the k-th row of A. Assume that T is linear.
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(a) Find the rank and nullity of T.

Hint. If you find this too abstract, try an example first, say with
m = 2 and n = 3. And finding the rank is the easier first step.

Solution. Using the standard basis {Eij} for Mm×n(R), we see that
T (Ek1) = ek where {e1, . . . , em} is the standard basis for Rm. Since a
spanning set for Rm is in the image of T, the map must be surjective,
which means the rank is m. By rank-nullity, the nullity is nm−m.

(b) For m = 2, and n = 3 find a basis for the nullspace of T.

Hint. For an element to be in the nullspace, the sum of the entries
in each of its rows needs to be zero. Can you make a basis with one
row in each matrix all zero?

Solution. Consider the set{[
1 0 −1
0 0 0

]
,

[
0 1 −1
0 0 0

]
,

[
0 0 0
1 0 −1

]
,

[
0 0 0
0 1 −1

]}
Notice that the 1 which occurs in each matrix occurs in a different
location in each matrix. It is now easy to show that any linear com-
bination of these matrices which equals the zero matrix must have all
coefficients equal to zero, so the set is linearly independent. Since it
has the correct size, it must be a basis for the nullspace.

16. This exercise is about how to deal with determining independent and span-
ning sets in vector spaces other than F n. Let V = P3(R), the vector space
of polynomials of degree at most 3 with real coefficients. Suppose that some
process has handed you the set of polynomials

S = {p1 = 1+2x+3x2+3x3, p2 = 5+6x+7x2+8x3, p3 = 9+10x+11x2+12x3, p4 = 13+14x+15x2+16x3}

We want to know whether S is a basis for V, or barring that extract a
maximal linearly independent subset.

(a) How can we translate this problem about polynomials into one about
vectors in Rn?

Solution. We know that Theorem 1.2.5 tells us that P3(R) is iso-
morphic to R4, and all we need to do is map a basis to a basis, but
we would like a little more information at our disposal.
Let B = {1, x, x2, x3} be the standard basis for V = P3(R). Then the
map

T (v) = [v]B

which takes a vector v to its coordinate vector is such an isomorphism.
What is important is that linear dependence relations among the vec-
tors in S are automatically reflected in linear dependence relations
among the coordinate vectors.
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(b) Determine a maximal linearly independent subset of S.

Solution. If we record the coordinate vectors for the polynomials
in S as columns of a matrix, we produce a matrix A and its RREF
R:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 7→ R =


1 0 −1 −2
0 1 2 3
0 0 0 0
0 0 0 0


So we see that the first two columns are pivot columns which means
S0 = {p1, p2} is a maximal linearly independent set.
We also recall that from the RREF, we can read off the linear depen-
dencies with the other two vecotrs:

p3 = −p1 + 2p2 and p4 = −2p1 + 3p2.

(c) Extend the linearly independent set from the previous part to a basis
for P3(R).

Solution. Since we are free to add whatever vectors we want to the
given set, we can add column vectors to the ones for p1 and p2 to
see if we can extend the basis. We know that {p1, p2, 1, x, x2, x3} is a
linearly dependent spanning set. We convert to coordinates and row
reduce to find the pivots. So we build a matrix B and its RREF:

1 5 1 0 0 0
2 6 0 1 0 0
3 7 0 0 1 0
4 8 0 0 0 1

 7→


1 0 0 0 −2 7

4

0 1 0 0 1 −3
4

0 0 1 0 −3 2
0 0 0 1 −2 1


We see the first 4 columns are pivots, so we may take {p1, p2, 1, x} as
one such basis.

17. Let A ∈ M5(R) be the block matrix (with off diagonal blocks all zero) given
by:

A =


−1 0
α 2

3 0 0
β 3 0
0 γ 3

 .

Determine all values of α, β, γ for which A is diagonalizable.
Solution. Since the matrix is lower triangular, it is easy to compute the
characteristic polynomial:

χA = (x+ 1)(x− 2)(x− 3)3.

The eigenspaces for λ = −1, 2 each have dimension 1 (the required min-
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imum) and equal to the algebraic multiplicity, so the only question is
what happens with the eigenvalue λ = 3. Consider the matrix A − 3I =

−4 0
α −1

0 0 0
β 0 0
0 γ 0

 . For the nullspace of A − 3I to have dimension 3,

the rank must be 2. Clearly the first two rows are linearly independent
(independent of α), while if either β or γ is nonzero, this will increase the
rank beyond two. So the answer is α can be anything, but β and γ must
both be zero.

18. Let A =

 3 0 0
6 −1 6
1 0 2

 ∈ M3(R).

(a) Find the characteristic polynomial of A.

Solution. χA = det(xI − A) = det

 x− 3 0 0
−6 x+ 1 −6
−1 0 x− 2

.

Expanding along the first row shows that χA = (x− 3)(x− 2)(x+1).

(b) Show that A is invertible.

Solution. Many answers are possible: detA = −6 6= 0, or 0 is not
an eigenvalue, or one could row reduce the matrix to the identity. All
show A is invertible.

(c) Justify that the columns of A form a basis for R3.

Solution. Since A is invertible, the rank of A is 3, which is the
dimension of the column space. So the column space spans all of
R3, which means the columns must be linearly independent either
by Theorem 1.1.3 or directly since the nullspace is trivial. Thus the
columns form a basis.

(d) Let B = {v1, v2, v3} be the columns of A, and let E be the standard
basis for R3. Suppose that T : R3 → R3 is a linear map for which
A = [T ]E . Determine [T ]B.

Solution. We know that [T ]B = Q−1[T ]EQ, where Q = [I]EB is a
change of basis matrix. But we see that Q = [I]EB = A by defini-
tion and since [T ]E = A as well, we check that [T ]B = Q−1[T ]EQ =
A−1AA = A.



Chapter 2

Vector space constructions

This chapter contains material the reader may or may not have seen. The most
critical is the first section on sums and direct sums. The later two sections are
more important to advanced readers.

One goal of linear algebra is to understand the properties of a linear map
T : V → W between two vector spaces. There are many ways in which to do
this depending on the end goal.

One approach is try to separate the original problem into smaller subprob-
lems. For example, it is often the case that restricted to a subspace U ⊆ V ,
the behavior of T is well understood. An easy instance of this is that we know
exactly what T does when restricted to U = ker(T ). If we could somehow write
V as a sum of spaces, ker(T )+U ′, the job of understanding the action of T would
be reduced to understanding T on the smaller subspace U ′. We shall make this
precise below.

In a very different direction than direct sums, let’s try to understand the
image of a linear map T : V → W . Of course if T is injective, then there is
an isomorphic copy of V sitting inside W. But if T is not injective, how do we
describe the image of the map in terms of V ?

Suppose w is in the image of T, say with T (v0) = w. We characterized the
inverve image, T−1(w) in Equation (1.2.1) as

T−1(w) = {v0 + k | k ∈ ker(T )} = v0 + ker(T ).

So all those vectors get mapped to the same point w ∈ W. This suggests setting
up an equivalence relation among the vectors in V, so that each equivalence class
is in bijective correspondence with the points in the image of T. We shall make
this clearer in the sections below.

2.1 Sums and Direct Sums
Let’s return to the example above in which T : V → W is a linear map, and
suppose {v1, . . . , vk} is a basis for U = ker(T ), and we extend that basis to a

42
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basis B = {v1, . . . , vn} for V . If we put U ′ = Span({vk+1, . . . , vn}), then every
element v ∈ V can be written as v = u+u′ for unique vectors u ∈ U and u′ ∈ U ′.

Taking this one step further, if v = u+ u′ as above we know that

T (v) = T (u+ u′) = T (u) + T (u′) = 0 + T (u′) = T (u′),

so that understanding the action of T on V has been reduced to understanding
the action on the subspace U ′. So effectively we have reduced the size of our
problem.

The situation we described above is actually rather special, so let’s begin
with a slightly more general notion.

Let U,W be subspaces of a vector space V . Denote by

U +W := {u+ w | u ∈ U, w ∈ W}.

That is, U +W is the set of vectors v ∈ V which can be written as v = u + w
for some u ∈ U and some w ∈ W. That seems very similar to what happened
in the example above, except in that example, the vectors u,w were uniquely
determined.

It is easy to check that U + W is a subspace of V, (indeed the smallest
subspace of V containing U and W ), but before going too far, we should make
a few simple observations. First, it is immediate to check that U +W = W +U
since addition in a vector space is commutative. What if we have more than two
subspaces?

If we had three subspaces Ui, i = 1, 2, 3, we could easily check (since we know
how to add pairs of subspaces) that

(U1 + U2) + U3 = U1 + (U2 + U3),

so we can unambiguously define

U1 + U2 + U3 := (U1 + U2) + U3,

and inductively we define

U1 + · · ·+ Un := (U1 + · · ·+ Un−1) + Un.

But as with any new concept, some examples help us better understand it.

Example 2.1.1 A standard decomposition of F n. Let {e1, . . . , en} be the
standard basis for F n, and put Ui = Span{ei}, the line through the origin in
the direction of ei. So when n = 3, these subspaces are just the x, y, and z axes.
Then we see that F n = U1+U2+ · · ·+Un. We also see that every element of F n

is the sum of uniquely determined elements from the Ui. As row vectors,

(a1, . . . , an) = (a1, 0, . . . , 0) + (0, a2, 0, . . . , 0) + · · ·+ (0, . . . , 0, an).

□



CHAPTER 2. VECTOR SPACE CONSTRUCTIONS 44

Example 2.1.2 Decomposing V = F 3. Let {e1, e2, e3} be the standard basis
for V , and let U = Span{e1, e2} and let W = Span{e3, e1 + e2 + e3}. It is
straightforward to show that

U +W = Span{e1, e2, e3, e1 + e2 + e3} = Span{e1, e2, e3} = V,

so every element of V can be written as the sum of vectors from U and W , but
in this case not necessarily uniquely.

As a trivial example, let v = e3. Then v can be written as v = u + w with
u = 0 and w = e3, or with u = −e1 − e2 and w = e1 + e2 + e3. □

The source of this non-uniqueness is actually easy to discover. Suppose that
V = U +W, and for some v ∈ V,

v = u1 + w1 = u2 + w2.

Then of course r = u1 − u2 = w2 − w1. For uniqueness, we would need u1 = u2

and w1 = w2. Said another way, we would need r = u1 − u2 = w2 − w1 = 0.
But u1 − u2 ∈ U and w2 − w1 ∈ W, so the only way to force uniqueness is if
U ∩W = {0}.

We summarize this as
Proposition 2.1.3 Let U,W be subspaces of a vector space V , and suppose that
V = U + W. Then every element of V is representable as a sum of uniquely
determined elements of U and W if and only if U ∩W = {0}.

In the case that V = U +W , and U ∩W = {0}, we write

V = U ⊕W

and call V the direct sum of the subspaces U and W.

Checkpoint 2.1.4 Suppose that Ui, i = 1, 2, 3 are subspaces of a vector space
V, and that V = U1 + U2 + U3. We want necessary and sufficient conditions so
that every element of V can be represented as a unique sum of elements from
the Ui. What about when V = U1 + · · ·+ Un for n ≥ 3?

Hint. To gain some insight, first find an example in R3 where Ui ∩ Uj = {0}
whenever i 6= j, but not every element of R3 has a unique representation as a
sum.

2.2 Quotient Spaces
We need a very different construction than what we used for direct sums; we
now want to build an entirely new space from a given vector space V and an
arbitrry subspace U. Let’s motivate this construction with a familiar example.
Given a linear map T : V → W with T (v0) = w, we characterized the inverve
image, T−1(w) in Equation (1.2.1) as

T−1(w) = {v0 + k | k ∈ ker(T )} = v0 + ker(T ).
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Let’s put an equivalence relation on V by saying that v1 ∼ v2 if and only if
v1 − v2 ∈ ker(T ). It is easy to check that this can be rephrased as v1 ∼ v2 if and
only if T (v1) = T (v2). We let V / ker(T ) denote the set of equivalence classes. So
if we let [v] denote the equivalence class containing v, then

V / ker(T ) = {[v] | v ∈ V } where [v] = {v + w | w ∈ ker(T )}.

As a shorthand, we write

v + ker(T ) := {v + w | w ∈ ker(T )}.

Now there was nothing particularly special about using ker(T ) for the con-
struction. So if V is a vector space, and U is any subspace, we define an equiva-
lence relation on V by v1 ∼U v2 iff v1 − v2 ∈ U . As in the previous example the
equivalence classes have the form

v + U := [v] = {v + u | u ∈ U}.

Finally, we denote by

V /U = {v + U | v ∈ V } = {[v] | v ∈ V }.

Definition 2.2.1 Let V be a vector space, and U any subspace. The set V /U
is called a quotient space, and V /U is read V mod U or simply the quotient
of V by U . The elements v + U are called cosets of U in V. ♢

As with any equivalence relation, the equivalence classes partition the original
set, so that V is the disjoint union of the cosets:

V =
⊔
v∈V

(v + U).

Example 2.2.2 Let V = R2 and U = Span{(a, b)} where (a, b) 6= (0, 0), thus
the subspace U is simply a line through the origin. Now let v = (c, d). Then the
coset v+U is simply the line through (c, d) in the direction of (a, b). We also see
that the union of these lines is all of V = R2. □

Now that we understand V /U as a set, we want to introduce an algebraic
structure on it inherited naturally from V. We define addition of cosets in a
natural manner:

(v + U) + (v′ + U) := (v + v′) + U.

It follows that the additive identity is 0+U(= U), the additive inverse of v+U
is −v+U, and scalar multiplication is defined by λ(v+U) = λv+U. One checks
the operations are well-defined and makes V /U a vector space over the same
scalar field as V.

One checks that V /{0} ∼= V, and V /V ∼= {0}, but how to think about V /U
in general is the subject of the next section.
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2.3 Linear Maps out of quotients
Suppose we have vector spaces V,W and a subspace U ⊆ V . How should one
define a linear map T : V /U → W? In general one should not (as least directly)!
We want to show that every well-defined linear map T : V /U → W arises in a
natural way from a linear map T0 : V → W.

Why such a fuss? How hard is it to define a map on cosets? While it isn’t
that hard, each such definition requires an extra step. To define T (v + U) one
must show that the definition is well-defined, meaning if v + U = v′ + U , then
T (v + U) = T (v′ + U). The method we shall propose will do this once and the
result will apply to all maps.

To begin, we first note that there is a natural linear map (called a projection)
π : V → V /U defined by

π(v) = v + U.

It is easy to check that this is a surjective linear map with ker(π) = U.
As an immediate corollary of properties of the projection map, we deduce:

Corollary 2.3.1 Let V be a finite-dimensional vector space over a field F , and
let U be a subspace of V. Then

dim(V /U) = dimV − dimU.

Proof. Consider the projection map π : V → V /U (given by π(v) = v + U). We
have already stated that π is a surjective linear map with ker π = U. So by the
rank-nullity theorem we have that

dimV = dim(V /U) + dimU,

from which the result follows. ■
So now we suppose that we have a linear map T : V → W , and a subspace

U ⊆ V . We want to know when we can induce a linear map T∗ : V /U → W
which makes the diagram below commute. What that means is that starting
with a vector v ∈ V , following either path to W produces the same result. In
terms of the functions, this means that

T (v) = (T∗ ◦ π)(v) = T∗(v + U).

V W

V /U

T

π
T∗

Figure 2.3.2 Factoring a map through a quotient
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It is evident that if such a linear map exists, it can have only one definition:

T∗(v + U) = T (v),

and it is here we confront and deal with the issue of T∗ being well-defined. If
v + U = v′ + U , we need that T (v) = T (v′).

By definition, the condition v + U = v′ + U is equivalent to v − v′ ∈ U , say
v = v′ + u for some u ∈ U. The requirement that T (v) = T (v′) demands that

T (v) = T (v′ + u) = T (v′) + T (u) = T (v′),

so we must have T (u) = 0. Thus a necessary and sufficient condition that the
map be well-defined is that U ⊆ ker(T ).

Theorem 2.3.3 Fundamental theorem on linear maps. Let T : V → W
be a linear map and U a subspace of V with U ⊆ ker(T ). Then there is a unique
linear map T∗ : V /U → W (defined by T∗(v + U) = T (v)) with Im(T∗) = Im(T ),
and with ker(T∗) = ker(T )/U.

Corollary 2.3.4 If T : V → W is a linear map, then the induced map T∗ :
V / kerT → W is injective.

What this says is that if the original map T is not injective (many things in
V mapping to the same element in W ), the coset v + kerT collects together all
the elements of V which map to the element T (v) in W. In this way we obtain
an isomorphic copy of V / kerT inside of W.

Corollary 2.3.5 First Isomorphism theorem. Let T : V → W be a linear
map. Then V / ker(T ) ∼= Im(T ) via the map T∗(v+ker(T )) = T (v). In particular,
if T is a surjective map then V / ker(T ) ∼= W.

In the interest of full disclosure, the first isomorphism theorem (and its corol-
laries) are not that robust in linear algebra since vector spaces are classified up
to isomophism by their dimension. They become much more important in group
and ring theory, but let’s try to give a sense of what they accomplish.
Example 2.3.6 Let’s take a simple example from multivariable calculus. Let
a, b, c be real numbers, not all zero. Consider the linear map T : R3 → R given
by T (x, y, z) = ax+ by + cz. This is certainly linear as it is of the form x 7→ Ax
where A is the 1× 3 matrix [a b c].

Let P = kerT , that is P is the plane through the origin ax + by + cz = 0.
How do we characterize the quotient space R3/P?

It is trivial to check that the map T is surjective, so the first isomorphism
theorem says that R3/P ∼= R.

Alternatively, we know that dimP = 2, so dim(R3/P ) = 3− 2 = 1, and any
two spaces of the same (finite) dimension are isomorphic, though the orignial
map T is more intrinsic to the problem. □



Chapter 3

Inner Product Spaces

This chapter contains the material that every linear algebra course wants to
cover, but which often gets short shrift as time runs short and students strain
to keep all the new concepts straight. So a point is made to take time with this
material.

It is in this chapter that we find some of the most important applications of
linear algebra as well as some of the deepest results, many of which have vast
generalizations in the realm of functional analysis.

Starting from basic definitions and properties, we move to the fundamental
notion of orthogonality and orthogonal projection. While grounded with geomet-
ric intuition, this notion has profound applications to high-dimensional spaces
where our geometric intuition fails. Applications include least squares solutions
to inconsistent linear systems as well as spectral decompositions for real symmet-
ric and unitary/normal complex matrices. We discuss results over the complex
numbers, and note where differences arise with the results over the reals. We
state without proof the spectral theorems and leverage them to develop the sin-
gular value decomposition of a matrix. We give an application an application to
image compression and explore some of the underlying duality.

3.1 Inner Product Spaces
While a great deal of linear algebra applies to all vector spaces, by restricting
attention to those with some notion of distance and orthogonality, we can go
much further.

3.1.1 Definitions and examples
Our discussion of inner product spaces will generally restrict to the setting
of a vector space over a field F being either the real or complex
numbers.

48
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Recall the axioms of an inner product. They are often paraphrased with
higher level concepts. For example, the first two axioms combined says that
the inner product is linear in the first variable (with the second variable
held constant). What that means is that if we fix a vector w ∈ V and define
T : V → V by T (v) = 〈v, w〉, then T is a linear operator on V.

Remark 3.1.1 We note that the third axiom tells us that the inner prod-
uct is conjugate linear in the second variable (or that the function of two
variables,〈·, ·〉, is sesquilinear). Using the first three axioms, if we fix v ∈ V ,
and define S : V → V by S(w) := 〈v, w〉, we observe

S(u+ w) = 〈v, u+ w〉 = 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉
= 〈u, v〉+ 〈w, v〉 = 〈v, u〉+ 〈v, w〉 = S(u) + S(v),

and

S(λu) = 〈v, λu〉 = 〈λu, v〉 = λ〈u, v〉 = λ〈v, u〉 = λS(u),

hence the term conjugate linear.
Remark 3.1.2 We also note that if we are dealing with a real inner product
space (i.e., F = R), then the inner product is linear in both variables leading
mathematicians to call it bilinear, that is linear in each variable while holding
the other fixed.
Remark 3.1.3 An inner product on a vector space V will give us a notion of
when two vectors are orthogonal. The positivity condition on an inner product
(〈v, v〉 > 0 unless v = 0) gives us a notion of length. We define the norm of a
vector v ∈ V by

‖v‖ :=
√
〈v, v〉.

First we assemble a collection of inner products, and their norms.

Example 3.1.4 V = F n. Let v = (a, . . . , an), w = (b1, . . . , bn) ∈ F n (written
as row vectors). Define

〈v, w〉 :=
n∑

i=1

aibi.

This inner product is called the standard inner product on F n. When
F = R, this is the usual dot product.

If v = (a, . . . , an), we see that

‖v‖ = 〈v, v〉 =

√√√√ n∑
i=1

aiai =

√√√√ n∑
i=1

|ai|2

□
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Example 3.1.5 V = Mm×n(C). Let A,B ∈ V = Mm×n(C). Define the
Frobenius inner product of A and B by

〈A,B〉 := tr(AB∗) = tr(B∗A),

where B∗ is the conjugate transpose of B, and tr is the trace of the matrix.
Here the norm is ‖A‖ =

√
tr(A∗A). □

Example 3.1.6 V = C([0, 1]). Let V = C([0, 1]) be the set of real-valued
continuous functions defined on the interval [0, 1]. For f, g ∈ C([0, 1]), define
their inner product on V by:

〈f, g〉 :=
∫ 1

0

f(t)g(t) dt.

If instead f and g are complex-valued, then the inner product becomes:

〈f, g〉 :=
∫ 1

0

f(t)g(t) dt.

Here the norm is ‖f‖ :=
√∫ 1

0
f(t)f(t) =

√∫ 1

0
|f(t)|2, where | · | is the usual

absolute value on the complex numbers. □
If (V, 〈·, ·〉) is an inner product space, we say that
• u, v ∈ V are orthogonal if 〈u, v〉 = 0.

• Two subsets S, T ⊆ V are orthogonal if 〈u, v〉 = 0 for every u ∈ S and
v ∈ T.

• v ∈ V is a unit vector if ‖v‖ = 1.

3.1.2 Basic Properties
We list some basic properties of inner products and their norms which can be
found in any of the standard references.

Let V be an inner product space with inner product 〈·, ·〉 and norm ‖ · ‖.

Theorem 3.1.7 For all u, v, w ∈ V and λ ∈ F

• If 〈v, u〉 = 〈v, w〉 for all v ∈ V, then u = w.

• ‖λv‖ = |λ| ‖v‖.

• ‖v‖ ≥ 0 for all v, and ‖v‖ = 0 if and only if v = 0.

• (Cauchy-Schwarz Inequality): | 〈u, v〉 | ≤ ‖u‖ ‖v‖.

• (Triangle inequality): ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

• (Pythagorean theorem) If 〈u, v〉 = 0, then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.



CHAPTER 3. INNER PRODUCT SPACES 51

Remark 3.1.8 The angle between vectors. For nonzero vectors u, v ∈ Rn,
the Cauchy-Schwarz inequality says that

| 〈u, v〉 |
‖u‖ ‖v‖

≤ 1, equivalently − 1 ≤ 〈u, v〉
‖u‖ ‖v‖

≤ 1.

Thus it makes sense to define a unique angle θ ∈ [0, π] with

cos θ :=
〈u, v〉
‖u‖ ‖v‖

which we can call the angle between the vectors u, v. In some statistical inter-
pretations of the vectors, the value of cos θ is called a correlation coefficient.

3.2 Orthogonality and applications
Throughout all vector spaces are inner product spaces over the field F = R or C
with inner product 〈·, ·〉. Generally the vector spaces are finite-dimensional unless
noted.

3.2.1 Orthogonal and Orthonormal Bases
Recall that a set S of vectors is orthogonal if every pair of distinct vectors in
S is orthogonal, and the set is orthonormal if S is an orthogonal set of unit
vectors.
Example 3.2.1 The standard basis in F n. Let E = {e1, e2, . . . , en} be the
standard basis in F n (ei has a one in the ith coordinate and zeros elsewhere). It
is immediate to check that this is an orthonormal basis for F n. □

We first make a very simple observation about an orthogonal set of nonzero
vectors; they are linearly independent.

Proposition 3.2.2 Let S = {vi}i∈I be an orthogonal set of nonzero vectors.
Then S is a linearly independent set.

Here S can be an infinite set which is why we index its elements by a set
I, but since the notion of linear (in)dependence only involves a finite number of
vectors at a time, our proposition holds true in this broader setting.

Proof. Suppose that S is a linearly dependent set. Then there exist vectors
vi1 , . . . , vik ∈ S and scalars aij not all zero so that

v = ai1vi1 + · · ·+ aikvik = 0.

Indeed, there is no loss to assume all the coefficients are nonzero, so let’s say
ai1 6= 0. We know that since v = 0, 〈v, vi1〉 = 0, but we now compute it differently
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and see

0 = 〈v, vi1〉 =
k∑

j=1

aij〈vij , vi1〉 = ai1〈vi1 , vi1〉 = ai1‖vi1‖2.

But vi1 6= 0, so its length is nonzero, forcing ai1 = 0, a contradiction. ■
Orthonormal bases offer distinct advantages in terms of representing coordi-

nate vectors or the matrix of a linear map. For example if B = {v1, . . . , vn} is a
basis for a vector space V, we know that every v ∈ V has a unique representation
as v = a1v1 + · · · + anvn the coefficients of which provide the coordinate vector
[v]B. But determining the coordinates is often a task which requires some work.
With an orthonormal basis, this process is completely mechanical.
Theorem 3.2.3 Let V,W be finite-dimensional inner product spaces with ortho-
normal bases BV = {e1, . . . , en} and BW = {f1, . . . , fm}.

1. Every vector v ∈ V has a unique representation as v = a1e1 + · · · + anen
where aj = 〈v, ej〉.

2. If T : V → W is a linear map and A = [T ]BW
BV

, then Aij = 〈T (ej), fi〉.

Proof of (1). Write v = a1e1 + · · ·+ anen. Then using the linearity of the inner
product in the first variable and 〈ei, ej〉 = δij, the Kronecker delta, we have

〈v, ej〉 =
n∑

i=1

ai〈ei, ej〉 = aj.

■
Proof of (2). In Subsection 1.4.2, we saw that the matrix of T is given by
A = [T ]BW

BV
where

T (ej) =
m∑
k=1

Akjfk.

We now compute

〈T (ej), fi〉 = 〈
m∑
k=1

Akjfk, fi〉 =
m∑
k=1

Akj〈fk, fi〉 = Aij.

■
It is clear that orthonormal bases have distinct advantages and there is a

standard algorithm to produce one from an arbitrary basis, but to understand
why the algorithm should work, we need to review projections.

From applications of vector calculus, one recalls the orthogonal projection
of a vector v onto the line spanned by a vector u. The projection is a vector
parallel to u, so is of the form λu for some scalar λ. Referring to the figure
below, if θ is the angle between the vectors u and v, then the length of proju v is
‖v‖ cos θ (technically its absolute value). But cos θ = 〈u, v〉/(‖u‖‖v‖), and the
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direction of u is given by the unit vector, u

‖u‖
, parallel to u, so putting things

together we see that

proju v = (‖v‖ cos θ) u

‖u‖
= ‖v‖ 〈u, v〉

‖u‖‖v‖
u

‖u‖
=

〈u, v〉
‖u‖2

u,

so the scalar λ referred to above is 〈u, v〉
‖u‖2

. We also note that the vector w :=

v − proju v is orthogonal to u.
Now the key to an algorithm which takes an arbitrary basis to an orthog-

onal one is the above construction. Note that in the figure below, the vectors
u and v are not parallel, so form a linearly independent set. The vectors u
and w are orthogonal (hence linearly independent) and have the same span as
the original vectors. Thus we have turned an arbitrary basis of two elements
into an orthogonal one. The Gram-Schmidt process below extends this idea
inductively.

v

u

proju v

w

Figure 3.2.4 Orthogonal projection of vector v onto u

Algorithm 3.2.5 Gram-Schmidt process. Let V be an inner product space,
and W a subspace with basis B = {v1, . . . , vm}. To produce an orthogonal basis
E = {e1, . . . , em} for W, proceed inductively.

• Let e1 = v1.

• Let ek = vk −
k−1∑
j=1

〈vk, ej〉
‖ej‖2

ej, for 2 ≤ k ≤ m.

To produce an orthonormal basis, normalize each vector replacing ej with
ej/‖ej‖.

We note that the first two steps of the Gram-Schmidt process are exactly
what we did above with the orthogonal projection.

3.2.2 Orthogonal complements and projections
Let V be an inner product space and W a subspace. Define

W⊥ = {v ∈ V | 〈v,W 〉 = 0}.
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The set W⊥ is called the orthogonal complement of W in V. The notation
〈v,W 〉 = 0 means that 〈v, w〉 = 0 for all w ∈ W , so every vector in W⊥ is
orthogonal to every vector of W .
Example 3.2.6 The orthogonal complement of a plane. For example, if
V = R3, and W is a line through the origin, then W⊥, the orthogonal complement
of W , is a plane through the origin for which the line defines the normal vector.

□
Checkpoint 3.2.7 Is the orthogonal complement a subspace? If W is a
subspace of a vector space V , is W⊥ necessarily a subspace of V ?

Hint. How do we check? Is 0 ∈ W⊥ (why?). If u1, u2 ∈ W⊥ what about u1+u2

and λu1? (why?)}
If may occur to you that the task of finding a vector in W⊥ could be daunting

since you have to check it is orthogonal to every vector in W . Or do you?
Checkpoint 3.2.8 How do we check if a vector is in the orthogonal
complement? Let S be a set of vectors in a vector space V, and W = Span(S).
Show that a vector v ∈ W⊥ if and only if 〈v, s〉 = 0 for every s ∈ S. This means
there is only a finite amount of work for any subspace with a finite basis.

Moreover, we know that W⊥ is a subspace of V, but what you have shown is
that S⊥ = W⊥ is also.
Hint. Everything in Span(S) is a linear combination of the elements of S, and
we know how to expand 〈v,

∑m
k=1 λisi〉.

We shall see below that if V is an inner product space and W a finite-
dimensional subspace, then every vector in V can be written uniquely as v =
w + w⊥, i.e., for unique w ∈ W and w⊥ ∈ W⊥. In different notation, that will
say that V = W ⊕W⊥, that V is the direct sum of W and W⊥.

For now let us verify only the simple part of showing it is a direct sum,
showing that W ∩W⊥ = {0}.

Proposition 3.2.9 If V is an inner product space and W any subspace, then
W ∩W⊥ = {0}.

Proof. Let w ∈ W ∩W⊥. If w 6= 0, then by the properties of an inner product
〈w,w〉 6= 0. But since w ∈ W⊥, the vector w is orthogonal to every vector in W,
in particular to w, a contradiction. ■

3.2.3 What good is an orthogonal complement anyway?
Let’s say that after a great deal of work we have obtained an m × n matrix A
and column vector b, and desperately want to solve the linear system Ax = b.

We know that the system is solvable if and only if b is in C(A), the column
space of A. But what if b is not is the column space? We want to solve this
problem, right? Should we just throw up our hands?
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This dilemma is not dissimilar from trying to find a rational number equal
to

√
2. It cannot be done. But there are rational numbers arbitrarily close to√

2. Perhaps an approximation to a solution would be good enough.
So now let’s make the problem geometric. Suppose we have a plane P in R3

and a point x not on the plane. How would we find the point on P closest to
the point x? Intuitively, we might “drop a perpendicular” from the point to the
plane and the point x0 where it intersects would be the desired closest point.

This is correct and gives us the intuition to develop the notion of an orthog-
onal projection. To apply it to our inconsistent linear system, we want to find
a column vector b̂ (in the column space of A) closest to b. We then check (see
Corollary 3.2.15) that the solution x̂ to Ax = b̂ satisfies the property that

‖Ax̂− b‖ ≤ ‖Ax− b‖ for any x ∈ Rn.

Since the original system Ax = b is not solvable, we know that ‖Ax − b‖ > 0
for every x, and that difference is an error term given by the distance between
Ax and b. The value x̂ minimizes the error, and is called the least squares
solution to Ax = b (since there is no exact solution). We shall explore this in
more detail a bit later.

3.2.4 Orthogonal Projections
Now we want to take our intuitive example of “dropping a perpendicular” and
develop it into a formal tool for inner product spaces.

Let V be an inner product space and W be a finite-dimensional subspace.
Since W has a basis, we can use the Gram-Schmidt process to produce and
orthogonal basis {w1, . . . , wr} for W .

Theorem 3.2.10 Let {w1, . . . , wr} be an orthogonal basis for a subspace W of
an inner product space V. Each vector v ∈ V can be represented uniquely as
v = w⊥ + w where w ∈ W, and w⊥ ∈ W⊥, that is w⊥ is orthogonal to W.
Moreover,

w =
〈v, w1〉
〈w1, w1〉

w1 + · · ·+ 〈v, wr〉
〈wr, wr〉

wr. (3.2.1)

Proof. Certainly w as defined is an element of W , and to see that w⊥ = v−w is
orthogonal to W , it is sufficient by Checkpoint 3.2.8 to verify that 〈w⊥, wi〉 = 0
for each i = 1, . . . , r.
Using the definition of w⊥ and bilinearity of the inner product we have

〈w⊥, wi〉 = 〈v − w,wi〉 = 〈v, wi〉 − 〈w,wi〉,

and since the{wj} form an orthogonal basis, the expression for w in (3.2.1) gives

〈w,wi〉 = 〈 〈v, wi〉
〈wi, wi〉

wi, wi〉 = 〈 〈v, wi〉
〈wi, wi〉

〈wi, wi〉 = 〈v, wi〉.

It is now immediate from the first displayed equation that
〈w⊥, wi〉 = 〈v − w,wi〉 = 〈v, wi〉 − 〈w,wi〉 = 〈v, wi〉 − 〈v, wi〉 = 0,
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as desired.
Finally to see that w⊥ and w are uniquely determined by these conditions, sup-
pose that as above v = w⊥ + w, and also v = w⊥

1 + w1 with w1 ∈ W and
w⊥

1 ∈ W⊥.
Setting the two expressions equal to each other and solving gives that

w − w1 = w⊥
1 − w⊥.

But the left hand side is an element of W while the right hand side is an element
of W⊥, so by Proposition 3.2.9, both expressions equal zero, which gives the
uniqueness. ■
Corollary 3.2.11 Let V be an inner product space and W be a finite-dimensional
subspace. Then

V = W ⊕W⊥.

In this case the direct sum is an orthogonal sum, so the expression is often
written as

V = W ⊞W⊥.
Another useful property of the orthogonal complement is

Corollary 3.2.12 Let V be an inner product space and W a finite-dimensional
subspace. Then

(W⊥)⊥ = W.

Proof. Recall that
W⊥ = {v ∈ V | 〈v,W 〉 = 0},

so
(W⊥)⊥ = {v ∈ V | 〈v,W⊥〉 = 0.

In particular, every w ∈ W is orthogonal to all of W⊥, so that W ⊆ (W⊥)⊥.
The other containment takes a bit more care.
Let v ∈ (W⊥)⊥. Since W is finite-dimensional, Theorem 3.2.10 says that v can
be written uniquely as

v = w⊥ + w

where w ∈ W and w⊥ ∈ W⊥. The goal is to show that w⊥ = 0.
Consider w⊥ = v − w. Since v ∈ (W⊥)⊥, and w ∈ W ⊆ (W⊥)⊥, we conclude
w⊥ ∈ (W⊥)⊥, so 〈w⊥,W⊥〉 = 0. But w⊥ ∈ W⊥ by the theorem, so 〈w⊥, w⊥〉 = 0
implying that w⊥ = 0 by the axioms for an inner product. Thus v = w ∈ W,
meaning (W⊥)⊥ ⊆ W, giving us the desired equality. ■
Definition 3.2.13 If V is an inner product space and W a finite-dimensional sub-
space with orthogonal basis {w1, . . . , wr}, then the orthogonal projection of
a vector v onto the subspace W is given by the expression in Theorem 3.2.10:

projW v :=
〈v, w1〉
〈w1, w1〉

w1 + · · ·+ 〈v, wr〉
〈wr, wr〉

wr.

♢
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Corollary 3.2.14 Let V be an inner product space and W be a finite-dimensional
subspace. If w ∈ W, then

projW w = w.

Proof. Combining Theorem 3.2.10 with the definition of projection, we know
that w can be written uniquely as w = w⊥ + projW w, where w⊥ ∈ W⊥. But
w = 0 + w, so w⊥ = 0 and w = projW w. ■

To complete our formalization of the idea of dropping a perpendicular, we
now show that the projection projW v of a vector v is the unique vector in W
closest to v.

Corollary 3.2.15 Let V be an inner product space and W be a finite-dimensional
subspace. If v ∈ V , then

‖v − projW v‖ < ‖v − w‖

for all w ∈ W , with w 6= projW v.

Proof. By Corollary 3.2.14, we may assume that v /∈ W, so consider any w ∈ W
with w 6= projW v. We certainly know that

v − w = v − projW v + projW v − w,

and we know that projW v − w ∈ W while by Theorem 3.2.10 we know that
v− projW v ∈ W⊥. Thus the vectors v−w, v− projW v and projW v−w form a
right triangle whose lengths satisfy the Pythagorean identity:

‖v − w‖2 = ‖v − projW v‖2 + ‖ projW v − w‖2.

It follows that if w 6= projW v, that ‖ projW v − w‖ > 0, so that ‖v − w‖ >
‖v − projW v‖. ■

3.2.5 A first look at the four fundamental subspaces
While in the previous section, we have seen how orthogonal projections and
complements are related, there is another prominent place in which orthogonal
complements arise naturally.

Let A ∈ Mm×n(C). Associated to A we have a linear transformation LA :
Cn → Cm given by left multiplication by A. To obviate the need to introduce
LA, we often write kerA for kerLA, and rangeA for rangeLA which we know is
the column space, C(A), of A.

Additionally, we also have a linear transformation LA∗ : Cm → Cn given by
left multiplication by A∗. We have the following very useful property relating A
and A∗:
Proposition 3.2.16 Let A ∈ Mm×n(C). For x ∈ Cn and y ∈ Cm, we have

〈Ax, y〉m = 〈x,A∗y〉n,
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where we have subscripted the inner product symbols to remind the reader of the
ambient inner product space, Cm or Cn.

Proof. Recall the inner product 〈v, w〉 in Cℓ is w∗v the matrix product of a 1× ℓ
row vector with an ℓ× 1 column vector. Thus

〈Ax, y〉m = y∗Ax = (A∗y)∗x = 〈x,A∗y〉n.

■
Many authors, e.g., [2] and [3], define the four fundamental subspaces.

For complex matrices, these are most easily described by the kernel and range of
A and A∗. For real matrices, the same identities can be rewritten in terms of the
row and column spaces of A and AT . The significance of these four subspaces will
be evident when we discuss the singular value decomposition of a matrix
in Section 3.6, but for now we reveal their basic relations.

Theorem 3.2.17 Let A ∈ Mm×n(C). Then

ker(A∗) = range(A)⊥ and range(A∗) = C(A∗) = ker(A)⊥.

Proof. Let w ∈ kerA∗. Then A∗w = 0, hence 〈A∗w, v〉 = 0 for all v ∈ Cn. By
taking complex conjugates in Proposition 3.2.16,

0 = 〈A∗w, v〉 = 〈w,Av〉,

so w is orthogonal to everything in range(A) = C(A). This gives the inclusion
ker(A∗) ⊆ range(A)⊥.
Conversely, if w ∈ range(A)⊥, then for all v ∈ Cn,

0 = 〈w,Av〉 = 〈A∗w, v〉.

In particular, taking v = A∗w, we have 〈A∗w,A∗w〉 = 0 which means that
A∗w = 0, showing that range(A)⊥ ⊆ ker(A∗), giving us the first equality.
Since the first equality is valid for any matrix A, we replace A by A∗, and use
that A∗∗ = A to conclude that

ker(A) = range(A∗)⊥.

Using Corollary 3.2.12 yields

ker(A)⊥ = range(A∗).

■
For real matrices, these become

Corollary 3.2.18 Let A ∈ Mm×n(R). Then

C(A)⊥ = ker(AT ) and R(A)⊥ = kerA.
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Proof. The first statement is immediate from the previous theorem since
range(A) = C(A). For the second, we had deduced above that ker(A) =
range(A∗)⊥. Now if A is a real matrix,

range(A∗) = range(AT ) = C(AT ) = R(A)

which finishes the proof.
■

3.3 Orthogonal Projections and Least Squares
Approximations

We begin with the notion of orthogonal projection introduced in the previous
section. We find different ways to compute it other than from the definiton, and
give an application to least squares approximations.

3.3.1 Orthonormal bases and orthogonal/unitary matrices.
Consider the inner product space V = F n where F = R or C, and denote by z
the complex conjugate of z.

If v =

a1...
an

 and w =

b1...
bn

 are two vectors in F n, we defined their inner

product by:

〈v, w〉 :=
n∑

i=1

aibi.

It is very convenient to recognize values of the inner product via matrix multi-
plication. In particular, regarding the column vectors v, w as n× 1 matrices

〈v, w〉 :=
n∑

i=1

aibi = w∗v

is the 1×1 matrix product w∗v where w∗ is the 1×n conjugate-transpose matrix
to w.

For vectors v, w as above, we have seen the meaning of w∗v. It is more than
idle curiosity to inquire about the meaning of vw∗. We can certainly compute
it, but first we note that while w∗v = 〈v, w〉 is a scalar (a 1× 1 matrix), in the
reverse order, vw∗ is an n× n matrix, specifically:

vw∗ =

a1...
an

 [b1 · · · bn
]
=


a1b1 · · · a1bn
a2b1 · · · a2bn

... ... ...
anb1 · · · anbn

 .
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It is probably a bit more useful to see how this product arises naturally in what
we have done so far.

Let apply the definition of an orthogonal projection to the inner product
space V = Cn; what happens for V = Rn will be clear.

Let W be an r−dimensional subspace of V with orthonormal basis {w1, . . . , wr}.
Then Definition 3.2.13 tells us that the orthogonal projection of a vector v into
the subspace W is given by:

projW v := 〈v, w1〉w1 + · · ·+ 〈v, wr〉wr.

Now while for a vector space V over a field F , we have defined multiplication
of a scalar λ times a vector v as λv, you might ask if we would get into trouble
if we defined vλ := λv. Since multiplication in a field is commutative, this turns
out to be just fine, but in more general structures (modules over rings) there
can be significant issues. So with that as preamble, let’s consider a summand
〈v, wj〉wj in the expression for an orthogonal projection. First we use that scalar
multiplication can be thought of on the right or the left and then we use the
specific nature of the inner product on Cn, so that

〈v, wj〉wj = wj〈v, wj〉 = wjw
∗
jv

Thus as a corollary we obtain a matrix-specific characterization of an orthogonal
projection to a subspace of Cn.

Corollary 3.3.1 Let W be a subspace of Cn with orthonormal basis {w1, . . . , wr}.
Then for any vector v ∈ Cn,

projW v := 〈v, w1〉w1 + · · ·+ 〈v, wr〉wr =
r∑

k=1

wkw
∗
kv =

(
r∑

k=1

wkw
∗
k

)
v,

where we note that the last expression is the matrix multiplication of an n × n
matrix times the n× 1 vector v.

Our next goal is to give a more intrinsic characterization of the matrix∑r
k=1 wkw

∗
k. Let A be the n × r matrix whose columns are the orthonormal

basis {w1, . . . , wr} of the subspace W. What should the matrix A∗A look like?
Using our familiar (row-column) method of multiplying two matrices to-

gether, the ij entry of the product is

w∗
iwj = 〈wj, wi〉 = δij (Kronecker delta),

so that A∗A = Ir, the r × r identity matrix.
In the other order we claim that

AA∗ =
r∑

k=1

wkw
∗
k

from Corollary 3.3.1, that is, AA∗ is the matrix of the orthogonal projection
(with respect to the standard basis) of a vector to the subspace W.
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This claim is most easily justified using the ”column-row” expansion of a
matrix product as given in [2]. If A is an n× r matrix (as it is for us), and B is
an r ×m matrix, then

AB = col1(A)row1(B) + · · ·+ colr(A)rowr(B).

Proof. The proof is simply a computation, but it is easy to make an error, so we
do it out explicitly. Note that each summand is the product of an n× 1 matrix
times an 1×m matrix.

col1(A)row1(B) + · · ·+ colr(A)rowr(B) =
a11b11 · · · a11b1m
a21b11 · · · a21b1m

... ... ...
an1b11 · · · an1b1m

+ · · ·+


a1rbr1 · · · a1r1brm
a2rbr1 · · · a2rbrm

... ... ...
anrbr1 · · · anrbrm

 .

Now from the row-column rule we know that the ij entry of AB is (AB)ij =∑r
k=1 aikbkj, which is exactly the sum of the ij entries from each of the r matrices

above. ■
Now we apply this to the product of the matrices AA∗. The column-row rule

immediately gives that

AA∗ = w1w
∗
1 + · · ·+ wrw

∗
r

as claimed. We summarize this as
Corollary 3.3.2 Let W be a subspace of Cn with orthonormal basis {w1, . . . , wr},
and let A be the n× r matrix whose columns are those orthonormal basis vectors.
Then for any vector v ∈ Cn,

projW v := AA∗v and A∗A = Ir.
While this is a very pretty expression for the orthogonal projection onto a

subspace W , it is predicated on having an orthonormal basis for the subspace.
Of course Gram-Schmidt can be employed, but it is an interesting exercise to
produce a matrix representation of the projection starting from an arbitrary
basis for the subspace. We reproduce Proposition 4.18 of [3] including a proof
which includes several interesting ideas.

Proposition 3.3.3 Let W be a subspace of Cn (or Rn) with arbitrary basis
{v1, . . . , vr}. Let A be the n× r matrix with columns v1, . . . , vr. Then the matrix
of the orthogonal projection, projW , with respect to the standard basis is

A(A∗A)−1A∗.
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Before giving the proof, let’s make a few observations. First is that we must
prove that the matrix A∗A is invertible. Second, what does this more complicated
expression look like when the given basis is actually orthonormal? But that one
is easy. We observed above that under those assumptions, A∗A was just the r× r
identity matrix, so our complicated expression in the proposition reduces to AA∗

as we proved in the earlier case. So there is some measure of confidence.

Proof. Given a vector v, we know its orthogonal projection, projW v is an element
of W so a linear combination of the basis for W, say

projW v = λ1v1 + · · ·+ λrvr.

On the other hand this linear combination can be represented as the matrix
product

λ1v1 + · · ·+ λrvr = Aλ

where

λ =

λ1
...
λr

 .

Thus we begin with the identity

projW v = Aλ.

By Theorem 3.2.10, we know that v − projW v = v − Aλ ∈ W⊥ so that for all
j = 1, . . . , r

〈v − Aλ, vj〉 = v∗j (v − Aλ) = 0.

Writing the system of r equations as a single matrix equation, we have

A∗(v − Aλ) = 0 or equivalently A∗v = A∗Aλ.

Assuming for the moment that A∗A is invertible, we multiply both sides of
A∗v = A∗Aλ by A(A∗A)−1 to obtain

A(A∗A)−1A∗v = A(A∗A)−1(A∗A)λ = Aλ = projW v,

as desired.
Finally, we must check that the r × r matrix A∗A is invertible. By the rank-
nullity theorem it suffices to know that A∗A has trivial nullspace. So suppose
that A∗Av = 0. Since 〈0, v〉 = 0, we can write

0 = 〈A∗Av, v〉 = v∗(A∗Av) = (Av)∗(Av) = ‖Av‖2.

Thus A∗Av = 0 implies Av = 0, but A is an n× r matrix which defines a linear
map from Cr → Cn. Since A has r linearly independent columns, it has rank r.
By the rank-nullity theorem, it follows that the nullity of A is zero, so Av = 0
implies v = 0. Thus A∗A has trivial nullspace and so is invertible. ■
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Let’s work through an example showing an orthogonal projection using the
three different characterizations given above. We fix the vector space V = R3,

and let w1 =

 1
1

−2

 and w2 =

 5
−1
2

, W = Span{w1, w2}, and y =

00
1

. We

note that w1 and w2 are orthogonal, but not orthonormal and claim y /∈ W .
Example 3.3.4 From the definition. Using Definition 3.2.13, we see that

projW v =
〈y, w1〉
〈w1, w1〉

w1 +
〈y, w2〉
〈wr, wr〉

w2 =
−2

6

 1
1

−2

+
2

30

 5
−1
2

 =

 0
−2/5
4/5

 .

We also check that

y⊥ = y − projW y =

 0
2/5
1/5

 ∈ W⊥.

□
Example 3.3.5 Using a matrix with orthonormal columns. Normalizing
the vectors w1 and w2, we obtain a matrix with orthonormal columns spanning
W :

A =

 1/
√
6 5/

√
30

1/
√
6 −1/

√
30

−2/
√
6 2/

√
30


That A has orthonormal columns implies that A∗A(= ATA) = I2 (the two-by-
two identity matrix), but that the matrix of projW with respect to the standard
basis for R3 is

[projW ] = AA∗ =

 1 0 0
0 1/5 −2/5
0 −2/5 4/5


and we check that

projW y =

 1 0 0
0 1/5 −2/5
0 −2/5 4/5

 0
0
1

 =

 0
−2/5
4/5

 .

□
Example 3.3.6 Using the given vectors in matrix form. Now we use
Proposition 3.3.3 with the original vectors as the columns of the matrix

A =

 1 5
1 −1

−2 2

 .
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So the matrix of the projection is

[projW ] = A(A∗A)−1A∗.

We note that

A∗A =

[
6 0
0 30

]
so (A∗A)−1 =

[
1/6 0
0 1/30

]
and

[projW ] = A(A∗A)−1A∗ = 1 5
1 −1

−2 2

[ 1/6 0
0 1/30

] [
1 1 −2
5 −1 2

]
=

 1 0 0
0 1/5 −2/5
0 −2/5 4/5


as in the previous computation. □
Remark 3.3.7 Which is the better method? At first blush (maybe second
too), it sure looks like the first example gives a method with the least amount
of work. So why should we even consider the second or third methods?

The answer depends upon the intended application. If there is a single com-
putation to make, the first method is mostly likely the most efficient, but if you
must compute the orthogonal projection of many vectors into the same subspace,
then the matrix method is far superior since you only compute the matrix once.

Examples of multiple projections include writing a computer graphics pro-
gram which renders a three dimensional image on a flat screen (aka a plane).

Remark 3.3.8 One final comment of note. Since

V = W ⊞W⊥,

we know that the identity operator IV can be written as

IV = projW + projW⊥ .

This means that
projW v = v − projW⊥ v,

so if the dimension of W⊥ is smaller than that of W, it may make more sense to
compute projW⊥ and subtract it from the identity to obtain the desired projec-
tion.
Example 3.3.9 Point closest to a plane. Let’s do another example illustrat-
ing some of the concepts above. Let V = R3 and W be the subpace described by
3x−y−5z = 0. Let’s find the point on the plane closest to the point v = (1, 1, 1).

We know that the plane W is spanned by any two linearly independent
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vectors in W, say

v1 =

 1
3
0

 and v2 =

 0
−5
1

 .

We form the matrix whose columns are v1 and v2, and use Proposition 3.3.3 to
compute the matrix of the projection (with respect to the standard basis) as

[projW ] =

 26
35

3
35

3
7

3
35

34
35

−1
7

3
7

−1
7

2
7


Thus

projW v =

 26
35

3
35

3
7

3
35

34
35

−1
7

3
7

−1
7

2
7

 1
1
1

 =
1

35

 44
32
20

 .

On the other hand, we could arrive at the answer via projW⊥ . Since W⊥ is

spanned by v3 =

 3
−1
−5



projW⊥ v =
〈v, v3〉
〈v3, v3〉

v3 =
1

35

 −9
3
15

 ,

so

projW v = v − projW⊥ v =
1

35

 44
32
20

 .

□

3.3.2 Sage Compuations
In this section, we use Sage to make some of the computations in the above
examples. In those examples, we started with an orthogonal basis spanning the

subspace W in V = R3, given by w1 =

 1
1

−2

 and w2 =

 5
−1
2

.

Of course, more typically we have an arbitrary basis and need to use Gram-
Schmidt to produce an orthogonal one. Also recall that Gram-Schmidt simply
accepts the first of the given vectors as the first in the orthogonal basis. So let’s

start with the basis w1 =

 1
1

−2

 and w′
2 =

 6
0
0

 = w1 +w2 (so that the basis

is not already orthogonal).
So we build a matrix A whose row vectors are w1 and w′

2. The Gram-Schmidt
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algorithm in Sage returns two matrices: G is a the matrix whose rows are an
orthogonal basis, and M is the matrix which tells the linear combinations of the
given rows used to produce the orthogonal rows. As you will see, we return to
our original orthogonal basis.

%display latex
latex.matrix_delimiters("[", "]")
A=matrix(QQbar , [[1,1,-2], [6,0 ,0]])
G,M=A.gram_schmidt ()
(A,G)

([ 1 1 -2] [ 1 1 -2]
[ 6 0 0], [ 5 -1 2])

\left(\left[\begin{array}{rrr}
1 \amp 1 \amp -2 \\
6 \amp 0 \amp 0
\end{array}\right], \left[\begin{array}{rrr}
1 \amp 1 \amp -2 \\
5 \amp -1 \amp 2
\end{array}\right ]\ right)

Next we compute the orthogonal projection of the vector v = [0, 0, 1] onto
the plane W using the definition of the orthogonal projection. Notice that the
rows of the matrix A are now the orthogonal basis for W.

v=vector(QQbar ,[0,0,1])
A=matrix(QQbar , [G[0],G[1]])
OP = vector(QQbar ,[0,0,0])
for i in range(G.nrows()):

scalar =
v.inner_product(G[i])/(G[i]. inner_product(G[i]))

OP = OP + scalar*G[i]
OP

(0, -2/5, 4/5)

Finally here we make A into a matrix with orthogonal columns to coincide
with Proposition 3.3.3. We then compute the matrix of the projW with respect
to the standard basis.

A= A.transpose ()
A* (A.conjugate_transpose ()*A).inverse () *

A.conjugate_transpose ()

[ 1 0 0]
[ 0 1/5 -2/5]
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[ 0 -2/5 4/5]

\left[\begin{array }{rrr}
1 \amp 0 \amp 0 \\
0 \amp \frac {1}{5} \amp -\frac {2}{5} \\
0 \amp -\frac {2}{5} \amp \frac {4}{5}
\end{array}\right]

3.3.3 More on orthogonal projections
We return to a motivating example: how to deal with inconsistent linear system
Ax = b. Since the system is inconsistent, we know that ‖Ax − b‖ > 0 for every
x in the domain. Want we want to do is find a vector x̂ which minimizes the
error, that is for which

‖Ax̂− b‖ ≤ ‖Ax− b‖

for every x in the domain.
So we let W be the column space of the m×n matrix A and let b̂ = projW b.

Since b̂ is in the column space, the system Ax = b̂ is consistent. With x̂ any
solution to Ax = b̂ Corollary 3.2.15 says that

‖Ax̂− b‖ ≤ ‖Ax− b‖

for every x in the domain.
To compute this solution, there are multiple paths. Of course, we could

compute the orthogonal projection, b̂ and solve the consistent system Ax = b̂,
but what if we could solve it without finding the orthogonal projection? That
would be a significant time-saver.

Let’s start from the premise that we have found the orthogonal projection,
b̂ of b into W = C(A), and a solution x̂ to Ax = b̂. Now by Theorem 3.2.10,
b = b̂+ b⊥ where

b⊥ = b− b̂ = b− Ax̂ ∈ W⊥.

Since W , the column space of A, is the image (range) of the linear map x 7→ Ax,
we deduce that

〈Ax,Ax̂− b〉m = 0.

By Proposition 3.2.16, we deduce

〈Ax,Ax̂− b〉m = 〈x,A∗(Ax̂− b)〉n = 0,

for every x ∈ Cn. By the positivity property of any inner product, that means
that A∗(Ax̂ − b) = 0. Thus to find x̂, we need only find a solution to the new
linear system

A∗Ax̂ = A∗b.

We summarize this as
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Corollary 3.3.10 Let A ∈ Mm×n(C), and b ∈ Cm. Then there is an x̂ ∈ Cn so
that

‖Ax̂− b‖ ≤ ‖Ax− b‖

for all x ∈ Cn. Moreover, the solution(s), x̂ are acquired by solving the consistent
linear system A∗Ax̂ = A∗b.

Checkpoint 3.3.11 Does it matter which solution x̂ we pick? In a
theoretical sense the answer is no, but in a computational sense, the answer is
probably. Of course if the system has a unique solution, the issue is resolved, but
if it has more than one solution, there are infinitely many since any two differ
by something in the nullspace of A. How should one choose?

3.3.4 Least Squares Examples
A common problem is determining a curve which best describes a set of observed
data points. The curve may be a polynomial, exponential, logarithmic, or some-
thing else. Below we investigate how to produce a polynomial which represents
a least squares approximation to a set of data points. We begin with the
simplest example, linear regression.

Consider the figure below in which two observed data points are plotted at
(xi, yi) and (xj, yj). The goal is to find an equation of a line of the y = mx + b
which “best describes” the given data, but what does that mean? Since in
general, not all data points will lie on any chosen line, each choice of line will
produce some error in approximation. Our first job is to decide on a method
to measure the error. Looking at this generally, suppose we have observed data
{(xi, yi) | i = 1 . . . n} and we are trying the find the best function y = f(x)
which fits the data.
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2 2 4 6 8

5

10

15

(xi, yi)

(xj, yj)

(xi, mxi + b)

Line: y=mx+ b

(xj, mxj + b)

Figure 3.3.12 The concept of a least squares approximation
We could set the error to be

E =
n∑

i=1

(yi − f(xi)),

but we immediately see this is a poor choice for when yi > f(xi) the error is
counted as positive while when yi < f(xi), the error is counted as negative, so
it would be possible for a really poor approximation to produce a small error by
having positive errors balanced by negative ones. Of course one solution would
be simply to take absolute values, but they are often a bit challenging to work
with, so for this and reasons connected to the inner product on Rn, we choose a
sum of squares of the errors:

E =
n∑

i=1

(yi − f(xi))
2,

so for our linear model the error is

E =
n∑

i=1

(yi −mxi − b)2.

So where is the linear algebra? It might occur to you in staring that the
expression for the error that if we had two vectors

Y =

 y1
...

yn

 and Z =

 mx1 + b
...

mxn + b
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that our error is
E = ‖Y − Z‖2 = 〈Y − Z, Y − Z〉.

It is clear where the vector Y comes from, but let’s see if we can get a matrix
involved to describe Z. Let

A =

 x1 1
...

xn 1

 .

Then

Z =

 mx1 + b
...

mxn + b

 = A

[
m
b

]
.

What would it mean if all the data points were to lie on the line? Of course
it would mean the error is zero, but to move us in the direction of work we have
already done, it would mean that

A

[
m
b

]
=

 y1
...

yn

 ,

in other words the linear system

AX = Y

is solvable with solution X =

[
m
b

]
.

When the data points do not all lie on the line, the original system is incon-
sistent, but Corollary 3.3.10 tells us how to find the best solution X̂ =

[
m
b

]
for which

‖AX̂ − Y ‖ ≤ ‖AX − Y ‖

for all X ∈ R2. Recalling that our error E = ‖AX̂ − Y ‖2, this will solve our
problem.

A simple example.
Suppose we have collected the following data points (x, y):

{(2, 1), (5, 2), (7, 3), (8, 3)}.

We construct the matrix

A =

 x1 1
...

xn 1

 =


2 1
5 1
7 1
8 1

 ,
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and

Y =

 y1
...

yn

 =


1
2
3
3


Using Corollary 3.3.10, we solve the consistent linear system

A∗AX̂ = A∗Y :

A∗A =

[
2 5 7 8
1 1 1 1

]
2 1
5 1
7 1
8 1

 =

[
142 22
22 4

]

and

A∗Y =

[
2 5 7 8
1 1 1 1

]
1
2
3
3

 =

[
57
9

]

We note that A∗A is invertible, so that[
142 22
22 4

] [
m
b

]
=

[
57
9

]
has a unique solution:

X̂ =

[
m
b

]
=

[
5/14
2/7

]
,

that is the desired line is y = 5/14x+ 2/7. We plot the data points and the line
of regression below. Note that the first point lies on the line.

2 4 6 8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 3.3.13 A simple linear regression
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We now consider higher degree polynomial approximations. For background,
we know that two points determine a line so we need to use linear regression
as soon as we have more than two points. Lagrange interpolation tells us
that given n points in the plane, no two on a vertical line, there is a unique
polynomial of degree n−1 which passes through them. We consider the quadratic
case. So as soon as there are more than 3 points, we are no longer guaranteed
a unique quadratic curve passing through them, so we desire a least squares
approximation.

Now we are looking for coefficients b0, b1, b2 so that y = b2x
2 + b1x+ b0 best

approximates the data. As before assume that we have observed data

(xi, yi) = (60, 3.1), (61, 3.6), (62, 3.8), (63, 4), (65, 4.1), i = 1 . . . 5.

In our quadratic model we have five equations of the form:

yi = b2x
2
i + b1xi + b0 + εi

where εi is the difference between the observed value and the value predicted by
the quadratic. As before we have a matrix equation of the form

Y = AX + ε(X)

where

A =


602 60 1
612 61 1
622 62 1
632 63 1
652 65 1

 , X =

 b2
b1
b0

 , and Y =


3.1
3.6
3.8
4

4.1

 .

Again, we seek an X̂ so that

‖Y = AX̂‖ ≤ ‖y − AX‖ = ‖ε(X)‖ (E(X) = ‖ε(X)‖2).

So we want to solve the consistent system

A∗AX̂ = A∗Y.

We have

A∗A =

 75185763 1205981 19359
1205981 19359 311
19359 311 5

 , A∗Y =


723613

10

11597
10

93
5

 , and X̂ =


− 141

2716

90733
13580

−715864
3395

 .

So the quadratic is

y = − 141

2716
x2 +

90733

13580
x− 715864

3395
.
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The points together with the approximating quadratic are displayed below.

59 60 61 62 63 64 65 66
2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Figure 3.3.14 A quadratic least squares approximation

3.4 Diagonalization of matrices in Inner Product
Spaces

We examine properties of a matrix in a inner product space which guarantee it
is diagonalizable. We also lay the ground work for singular value decomposition
of an arbitrary matrix.

In particular, we shall show that a real symmetric matrix and a complex
unitary matrix can always be diagonalized.

While such a result is remarkable in and of itself since these properties must
somehow guarantee that for such matrices each eigenspace has geometric mul-
tiplicity equal to its algebraic multiplicity, it leads us to discover an important
result about the representation of any real or complex m×n matrix A. The key
is that for any such matrix, both A∗A and AA∗ are Hermitian matrices. What is
even more interesting is that diagonalization of A∗A still tells us very important
information about the original matrix A.

3.4.1 Some relations between A and A∗

Let’s begin with some simple properties concerning the rank of a matrix.
Proposition 3.4.1 Let A be an m× n matrix with entries in any field F .

1. Let P (resp. Q) be any invertible m×m (resp. n×n) matrix with entries
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in F . Then
rank(PAQ) = rankA.

Equivalently, one can say that elementary row or column operations on a
matrix do not change its rank.

2. rankA = rankAT (i.e., row rank is equal to column rank).

3. If A has complex entries then rankA = rankA∗.

Proof of (1). See Theorem 3.4 of [1]. ■

Proof of (2). Recall the the number of pivots is equal to the row and column rank,
so consider the reduced row-echelon form of the matrix, noting that elementary
row operations do not change the row space nor the dimension of the column
space. ■

Proof of (3). The difference between A∗ and AT is simply that the entries
of AT have been replaced by their complex conjugates, so if there were a linear
dependence among the rows of (say) A∗, conjugating that relation would produce
a linear dependence among the rows of AT . ■

3.4.2 A closer look at matrices A∗A and AA∗.
In Corollary 3.3.2, we have seen both of these products of matrices when the
columns of A are orthonormal; one product producing an identity matrix, the
other the matrix of the orthogonal projection into the column space of A. But
what can we say in general (when the columns are not orthonormal vectors)?

Proposition 3.4.2 Let A be any m × n matrix with real or complex entries.
Then

rankA = rank(A∗A) = rank(AA∗).

Proof. We first show that rankA = rank(A∗A). Since A is m × n and A∗A is
n×n, both matrices represent linear transformations from a domain of dimension
n. As such, the rank-nullity theorem says that

n = rankA+ nullityA = rank(A∗A) + nullity(A∗A).

We show that the two nullspaces (kernels) are equal, hence have the same dimen-
sion, and the statement about ranks will follow.
Since any linear map takes 0 to 0, it is clear that kerA ⊆ kerA∗A. Conversely,
suppose that x ∈ kerA∗A. Then A∗Ax = 0, hence 〈x,A∗Ax〉 = 0, so by Propo-
sition 3.2.16,

0 = 〈x,A∗Ax〉 = 〈Ax,Ax〉
which implies Ax = 0 by the positivity of the inner product. Thus kerA∗A ⊆
kerA, giving us the desired equality.
To show that rankA = rankAA∗, we show equivalently (see Proposition 3.4.1)
that rankA∗ = rankAA∗. We showed above that for any matrix B, rankB =
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rankB∗B, so letting B = A∗, we conclude

rankA∗ = rank((A∗)∗A∗) = rank(AA∗).

■
Let us note another common property of AA∗ and A∗A.

Proposition 3.4.3 Let A be any m × n matrix with real or complex entries.
Then the nonzero eigenvalues of A∗A and AA∗ are the same. Note that zero may
be an eigenvalue of one product, but not the other.

Proof. This result is fairly general. Suppose that A,B are two matrices for
which both products AB and BA are defined, and suppose that λ is a nonzero
eigenvalue for AB. This implies there exists a nonzero vector v for which ABv =
λv. Multiplying both sides by B and noting multiplication by B is a linear map,
we conclude that

(BA)Bv = λ(Bv),

which shows that λ is an eigenvalue of BA so long as Bv 6= 0 (eigenvectors
need to be nonzero). But if Bv = 0, then ABv = λv = 0 which implies λ = 0,
contrary to assumption.
For the eigenvalue λ = 0, the situation can be (and often is) different. Let
A =

[
1 1

]
, and consider B = AT . Then

AB =
[
2
]

while BA =

[
1 1
1 1

]
.

The matrix AB is clearly non-singular, while the rank of BA is one, hence having
a non-trivial nullspace. ■

Before proceeding, we need to make a few more definitions and raise one
cautionary note. For the caution, observe that in general results we state for
complex matrices A hold analogously for real matrices, replacing A∗ by AT .
The Spectral Theorem for complex matrices and the Spectral Theorem for real
matrices have distinctly different hypotheses, and we want to spend a bit of time
explaining why.

While all the terms we list below are defined in the section on definitions,
it is useful for comparison to list them explicitly here. Let A ∈ Mn(C) and
B ∈ Mn(R)

• A is normal if AA∗ = A∗A.

• A is unitary if AA∗ = A∗A = In

• A is Hermitian if A = A∗.

• B is normal if BBT = BTB.

• B is orthogonal if BBT = BTB = In
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• B is symmetric if B = BT .

Note that both Hermitian and unitary matrices are normal, though for ex-
ample a Hermitian matrix is unitary only if A2 = In. Analogous observations
are true for real matrices. The point here is that the complex Spectral Theo-
rem holds for the broad class of normal matrices, but the real Spectral Theorem
holds only for the narrower class of real symmetric matrices. We still need to
understand why.

We first consider some properties of real orthogonal matrices and complex
unitary matrices.

Proposition 3.4.4 Let P ∈ Mn(R) (resp. U ∈ Mn(C)). The following state-
ments are equivalent:

1. P is an orthogonal matrix (resp. U is a unitary matrix).

2. P TP = In (resp. U∗U = In).

3. PP T = In (resp. UU∗ = In).

4. P−1 = P T (resp. U−1 = U∗)

5. 〈Pv, Pw〉 = 〈v, w〉 for all v, w ∈ Rn (resp. 〈Uv, Uw〉 = 〈v, w〉 for all
v, w ∈ Cn.)

Proof. As a sample consider the case where A∗A = In. This says that A has a
left inverse, but since A is a square matrix, it also has a right one and they are
equal.
For the last statement, recall from Proposition 3.2.16 that for any matrix A ∈
Mn(C),

〈Av,w〉 = 〈v, A∗w〉

for all v, w ∈ Cn. It follows that for an orthogonal/unitary matrix

〈Av,Aw〉 = 〈v, A∗Aw〉 = 〈v, w〉.

■
Below we state some simple versions of the spectral theorems.

Theorem 3.4.5 The Spectral Theorem for normal matrices. If A ∈
Mn(C) is a normal matrix, then there is a unitary matrix U and complex scalars
λ1, . . . , λn so that

diag(λ1, . . . , λn) = U∗AU.

In particular, any complex normal matrix can be unitarily diagonalized. The
columns of U are eigenvectors for A and form an orthonormal basis for Cn.

Theorem 3.4.6 The Spectral Theorem for real symmetric matrices. If
A ∈ Mn(R) is a symmetric matrix, then there exists an orthogonal matrix P and
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real scalars λ1, . . . , λn so that

diag(λ1, . . . , λn) = P TAP.

In particular, any real symmetric matrix can be orthogonally diagonalized. The
columns of P are eigenvectors for A and form an orthonormal basis for Rn.

Remark 3.4.7 To gain some appreciation of why there is a difference in hypothe-
ses between the real and complex versions of the spectral theorem, consider the
matrix A =

[
0 1

−1 0

]
, and note that A is orthogonal (hence normal), but not

symmetric. One immediately checks that that characteristic polynomial of A,
χA = x2 + 1, has no real roots which means A has no real eigenvalues so cannot
possibly be diagonalized to say nothing of orthogonally diagonalized. Clearly
one important element of the spectral theorem is that the characteristic polyno-
mial must split completely (factor into all linear factors) over the field. This is
given for the complex numbers since they are algebraically closed, but not so for
the real numbers. So in the real case, we must somehow guarantee that a real
symmetric matrix has only real eigenvalues.

We state the following proposition for complex Hermitian matrices, but it
also applies to real symmetric matrices since for a real matrix, AT = A∗. Also
note that every real or complex matrix has all its eigenvalues in C.

Proposition 3.4.8 Let A be a complex Hermitian matrix, and λ an eigenvalue
for A. Then λ is necessarily a real number.

Proof. Let λ be an eigenvalue of A, and let v be an eigenvector for λ. Then

λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈v, A∗v〉 = 〈v, Av〉 = 〈v, λv〉 = λ〈v, v〉,

where we have used the Hermitian property (A∗ = A) and the sesquilinearity of
the inner product. Since v 6= 0, we know that 〈v, v〉 6= 0, from which we conclude
λ = λ, hence λ is real. ■

Analogous to Proposition 1.5.5 for arbitrary matrices, we have

Proposition 3.4.9 Let A ∈ Mn(C) be Hermitian matrix. Then eigenspaces
corresponding to distinct eigenvalues are orthogonal.

Proof. Suppose that λ and µ are distinct eigenvalues for A. Let v be an eigen-
vector with eigenvalue λ and w be an eigenvector with eigenvalue µ. Then

λ〈v, w〉 = 〈λv, w〉 = 〈Av,w〉 (1)
= 〈v, A∗w〉

(2)
= 〈v, Aw〉 = 〈v, µw〉 = µ〈v, w〉 (3)

= µ〈v, w〉,

where (1) is true by Proposition 3.2.16, (2) is true since A is Hermitian, (3)
is true by Proposition 3.4.8 and the remaining equalities hold using standard
properties of the inner product. Rewriting the expression, we have

(λ− µ)〈v, w〉 = 0,
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and since λ 6= µ, we conclude 〈v, w〉 = 0 as desired. ■
The proof of the spectral theorems is rather involved. Of course any matrix

over C will have the property that its characteristic polynomial splits, but we
have also shown this for real symmetric matrices. The hard part is showing
that each eigenspace has dimension equal to the algebraic multiplicity of the
eigenvalue. For this something like Schur’s theorem is used as a starting point.
See Theorem 6.21 of [1].

We would like to use the spectral theorems to advance the proof of the
singular value decomposition (SVD) of a matrix, though it is interesting to note
that other authors do the reverse, see section 5.4 of [3].

Remark 3.4.10 We conclude this section with another interpretation of the
spectral theorem, giving a spectral decomposition which will be mirrored in the
next section on the singular value decomposition.

We restrict our attention to n×n matrices A over the real or complex number
which are Hermitian (i.e., symmetric for a real matrix), and consequently for
which all the eigenvalues are real. We list the eigenvalues λ1, . . . , λn, though
this does not mean they need be all distinct. By Theorem 3.4.5, there exists a
unitary matrix U whose columns {u1, . . . , un} form an orthonormal basis of Cn

consisting of eigenvectors for A so that

diag(λ1, . . . , λn) = UAU∗.

In the discussion preceding Corollary 3.3.2 we used the column-row rule for
matrix multiplication to show that

UU∗ = u1u
∗
1 + · · ·+ unu

∗
n

which is the orthogonal projection into the column space of A (all of Cn in this
case), but viewed as the sum of one-dimensional orthogonal projections onto the
spaces spanned by each ui. It follows that
Proposition 3.4.11 Spectral decomposition of a Hermitian matrix. Let
A ∈ Mn(C) be a Hermitian matrix with (real) eigenvalues λ1, . . . , λn. Let U be
the unitary matrix whose orthonormal columns ui are eigenvectors for the λi.
Then

A = U diag(λ1, . . . , λn)U
∗ = λ1u1u

∗
1 + · · ·+ λnunu

∗
n.

Proof. By the spectral theorem,

diag(λ1, . . . , λn) = U∗AU

or
A = (U∗)−1 diag(λ1, . . . , λn)U

−1 = U diag(λ1, . . . , λn)U
∗,

since U is unitary, so U−1 = U∗, and the result follows. ■
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3.5 Adjoint Maps and properties
In Proposition 3.2.16, we have seen how a complex m × n matrix and its con-
jugate transpose have a natural relation with respect to inner products, and in
Subsection 3.2.5 took a first look at the four fundamental subspaces. In this sec-
tion we develop the corresponding notions for linear maps between inner product
spaces.

3.5.1 Basic Properties
Let V,W be inner product spaces and T : V → W be a linear map. We can ask
if there exists a linear map S : W → V so that

〈T (v), w〉W = 〈v, S(w)〉V .

Let’s look at a few examples.

Example 3.5.1 T (x) = Ax. If A is an m×n complex matrix, then T (x) = Ax
defines a linear transformation T : Cn → Cm. In Proposition 3.2.16, we saw
that the linear map S : Cm → Cn given by S(X) = A∗x satisfies the requisite
property that

〈T (v), w〉W = 〈v, S(w)〉V .

□
Example 3.5.2 Orthogonal Projections. Let V be an inner product space
and W a subspace with orthonormal basis {w1, . . . , wr}. As we have seen in
Subsection 3.2.4, the orthogonal projection of V onto W is given by

projW (v) = 〈v, w1〉w1 + · · ·+ 〈v, wr〉wr.

By Theorem 3.2.10 and Corollary 3.2.14, the projection map satisfies v⊥ :=
v− projW (v) ∈ W⊥ and proj2W = projW . We wish to show that the projection is
self-adjoint, that is,

〈projW v, u〉 = 〈v, projW u〉.

□
Proof. To show that

〈projW v, u〉 = 〈v, projW u〉
for all u, v ∈ V, we write v = projW v+ v⊥ and u = projW u+ u⊥ (with v⊥, u⊥ ∈
W⊥). Then

〈projW v, u〉 = 〈projW v, projW u〉+ 〈projW v, u⊥〉 = 〈projW v, projW u〉,

and

〈v, projW u〉 = 〈projW v, projW u〉+ 〈v⊥, projW u〉 = 〈projW v, projW u〉

which establishes the equality. ■
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Example 3.5.3 Hyperplane Reflections. Let V be a finite-dimensional
inner product space, u a unit vector, and W the hyperplane (through the origin)
normal to u. Geometrically, we want to reflect a vector v across the hyperplane
W. One way to describe this is to write v = projW v + v⊥ and define H(v) =
projW v − v⊥, but we recognize that v⊥ = 〈v, u〉u, so we can simply write

H(v) = v − 2〈v, u〉u.

The map H is often called a Householder transformation. We show that it
too is self-adjoint. □

Proof. As before, we compute both sides of the desired equality: 〈Hv, z〉 =
〈v,Hz〉 and show they are equal.
One the one hand,

〈Hv, z〉 = 〈v − 2〈v, u〉u, z〉 = 〈v, z〉 − 2〈v, u〉〈u, z〉.

On the other hand,

〈v,Hz〉 = 〈v, z − 2〈z, u〉u〉 = 〈v, z〉 − 2〈z, u〉〈v, u〉,

and since 〈z, u〉 = 〈u, z〉, we have the desired equality. ■
It is straightforward to show than if an adjoint exists, it is unique:

Proof. If for all v ∈ V,w ∈ W

〈Tv, w〉 = 〈v, Sw〉 = 〈v, S ′w〉,

then
〈v, (S − S ′)w〉 = 0

for all v, w, which implies S = S ′. ■
We denote the unique adjoint of the linear map T as T ∗. As a consequence

of uniqueness it is immediate to check that

(λT )∗ = λT ∗, (S + T )∗ = S∗ + T ∗. and (T ∗)∗ = T.

If V is a finite-dimensional inner product space, it is easy to show that every
linear map T : V → W has an adjoint.
Proposition 3.5.4 Let V be a finite-dimensional inner product space with or-
thonormal basis {e1, . . . , en}. Then the adjoint map T ∗ : W → V is linear and
given by

T ∗(w) =
n∑

k=1

〈w, T (ek)〉ek.

Proof. Recall that by Theorem 3.2.3, every vector v ∈ V has a unique represen-
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tation as v =
∑n

k=1〈v, ek〉ek. As a consequence,

〈Tv, w〉 = 〈T (
n∑

k=1

〈v, ek〉ek), w〉 =
n∑

k=1

〈v, ek〉〈T (ek), w〉

=
n∑

k=1

〈w, T (ek)〉〈v, ek〉 =
n∑

k=1

〈v, 〈w, T (ek)ek〉ek〉

= 〈v,
n∑

k=1

〈w, T (ek)〉ek〉 = 〈v, T ∗(w)〉.

It follows from this definition and properties of the inner product that T ∗ is
linear. ■

As a means of connecting this notion of adjoint with the properties of the
conjugate transpose of a matrix given in Proposition 3.2.16, we have the following
proposition.
Proposition 3.5.5 Let V,W be finite-dimensional inner product spaces with
orthonormal bases BV and BW . Then the matrix of the adjoint T ∗ of a linear
map T : V → W is the conjugate transpose of the matrix of T, precisely

[T ∗]BV
BW

=
(
[T ]BW

BV

)∗
.

Proof. Let the orthonormal bases be given by BV = {e1, . . . , en} and BW =
{f1, . . . , fm}. If A = [T ]BW

BV
and B = [T ∗]BV

BW
then by Theorem 3.2.3, Bij =

〈T ∗(fj), ei〉 and

Aij = 〈T (ej), fi〉 = 〈ej, T ∗(fi)〉 = 〈T ∗(fi), ej〉 = Bji

which establishes the result. ■

3.5.2 A second look at the four fundamental subspaces
In the previous section, we established the existence and uniqueness of the ad-
joint of a linear map defined on a finite-dimensional inner product space, and
connections with the matrix of the linear transformation. Here we look at a
few more properties including a second look at the four fundamental subspaces
which lie at the heart of the singular value decomposition.

A linear operator T : V → V on an inner product space is called self-adjoint
or Hermitian if T ∗ = T. We saw that both the Householder transformation and
the orthogonal projection were examples of self-adjoint operators.
Proposition 3.5.6 Suppose that U, V,W are finite-dimensional inner product
spaces, and S : U → V and T : V → W are linear maps. Then

• S∗T ∗ = (TS)∗

• In particular, if T is invertible, then so is T ∗, and (T ∗)−1 = (T−1)∗.
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Proof. For all u ∈ U and w ∈ W we have

〈u, S∗T ∗w〉 = 〈Su, T ∗w〉 = 〈TS(u), w〉 = 〈u, (TS)∗w〉

which yields S∗T ∗ = (TS)∗.
For the second, it is immediate that the adjoint of the identity map is again an
identity map. As a consequence (and using the first part),

(T−1T )∗ = (IdV )
∗ = IdV = T ∗(T−1)∗,

which together with the identity with the operators reversed gives the result.
Actually, being operators on finite dimensional vector spaces, one such identity
yields the other by rank-nullity. ■

Another important class of linear map between inner product spaces is the
notion of an isometry, a linear map T : V → W which satisfies

〈Tv1, T v2〉W = 〈v1, v2〉V
for all v1, v2 ∈ V.

Proposition 3.5.7 If T : V → W is an isometry, then T is injective. Moreover,
if T is surjective, then T ∗ = T−1.

Proof. To show that T is injective, we note that the kernel is trivial: If T (v) = 0,
then

〈T (v), T (v)〉 = 〈v, v〉 = 0

which can happen if and only if v = 0.
Now suppose that T is surjective. Let v ∈ V and w ∈ W be arbitrary. Choose
v′ ∈ V with T (v′) = w. Then

〈T (v), w〉 = 〈T (v), T (v′)〉 = 〈v, v′〉 = 〈v, T−1(w)〉,

so by uniqueness of the adjoint, T ∗ = T−1. ■
The following theorem should be compared to Theorem 3.2.17 and its corol-

lary.
Theorem 3.5.8 Let V,W be finite dimensional inner product spaces and T :
V → W a linear map. Then

• kerT ∗ = (ImT )⊥,

• Im(T ∗) = (kerT )⊥.

Proof. Let w ∈ ker(T ∗). Then T ∗(w) = 0, so 〈v, T ∗(w)〉 = 0 = 〈T (v), w for
all v ∈ V . Thus w is orthogonal to the image of T , i.e., ker(T ∗) ⊆ (ImT )⊥.
Conversely, if w ∈ (ImT )⊥, then for all v ∈ V ,

0 = 〈T (v), w〉 = 〈v, T ∗(w)〉.

In particular, choosing v = T ∗(w) shows that T ∗(w) = 0, hence (ImT )⊥ ⊆
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kerT ∗, giving the first equality.
Since the first statement is true for any linear map and finite-dimensional inner
product spaces, we replace T by T ∗ and use (T ∗)∗ = T to conclude

kerT = (ImT ∗)⊥.

Finally, using Corollary 3.2.12 yields

(kerT )⊥ = ImT ∗.

■

3.6 Singular Value Decomposition
We show how the spectral decomposition for Hermitian matrices gives rise to
an analogous, but very special decomposition for an arbitrary matrix, called the
singular value decomposition (SVD).

We shall state without proof the version of the SVD which holds for linear
transformations between finite-dimensional inner product spaces, but its state-
ment is so elegant, it’s depth of importance is almost lost.

Then we state and prove the matrix version, providing some examples to
demonstrate its utility.

3.6.1 SVD for linear maps
We begin with a statement of the singular value decomposition for linear maps
as paraphrased from Theorem 6.26 of [1].

Theorem 3.6.1 Let V,W be finite-dimensional inner product spaces and
T : V → W a linear map having rank r. Then there exist orthonormal bases
{v1, . . . , vn} for V and {w1, . . . , wm} for W, and positive scalars σ1 ≥ · · · ≥ σr

so that

T (vi) =

{
σiui if 1 ≤ i ≤ r

0 if i > r.

Moreover, the σi are uniquely determined by T, and are called the singular
values of T.

Another way to state the main part of this result is the if the orthonormal
bases are BV = {v1, . . . , vn} and BW = {w1, . . . , wm}, then the matrix of T with
respect to these bases has the form

[T ]BW
BV

=

[
D 0
0 0

]
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where D =

 σ1 0
. . .

0 σr

 and the lower right block of zeros of [T ]BW
BV

has size

(m− r)× (n− r).

Remark 3.6.2 Staring at the form of the matrix above, does it really seem all
that special or new? Indeed, we know that given an m × n matrix A, we can
perform elementary row and column operations on A, represented by invertible
matrices P,Q so that

PAQ =

[
Ir 0
0 0

]
.

Now the matrices P,Q just represent a change of basis as happens in the
theorem. Specifically (and assuming for convenience of notation that V = Cn,
W = Cm with standard bases En and Em), the matrices P and Q give rise to
bases BV for V , and BW for W, so that

PAQ = [I]BW
Em [T ]EmEn [I]

En
BV

= [T ]BW
BV

=

[
Ir 0
0 0

]
,

so that with the obvious enumeration of the bases, the map T acts by vi 7→ 1 ·wi

for 1 ≤ i ≤ r, and vi 7→ 0 for i > r.
But then we look a bit more carefully. The elementary row and column

operations just hand us new bases with no special properties. We could make
both bases orthogonal via Gram-Schmidt, but then would have no hope that vi 7→
1 · wi for 1 ≤ i ≤ r, and vi 7→ 0 for i > r. In addition, we know that orthogonal
and unitary matrices are very special since they preserve inner products, so the
geometric transformations that are taking place in Cn and Cm are rigid motions
with the only stretching effect given by the singular values. In other words, there
is actually a great deal going on in this theorem which we shall now explore.

3.6.2 SVD for matrices
We begin with an arbitrary m×n matrix A with complex entries. Let B = A∗A,
and note that B∗ = B, so B is an n×n Hermitian matrix and the Spectral The-
orem implies that there is an orthonormal basis for Cn consisting of eigenvectors
for B = A∗A having (not necessarily distinct) eigenvalues λ1, . . . , λn.

We have already seen in Proposition 3.4.8 that Hermitian matrices have real
eigenvalues, but we can say more for A∗A. Using the eigenvectors and eigenvalues
from above, we compute:

‖Avi‖2 = 〈Avi, Avi〉 = (Avi)
∗(Avi) = v∗iA

∗Avi

= v∗i (A
∗A)vi

(1)
= v∗i λivi

(2)
= λiv

∗
i vi

(3)
= λi,

where (1) is true since vi is an eigenvector for A∗A, (2) is true since in a vector
space scalars commute with vectors, and (3) is true since the vi are unit vectors.
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Thus in addition to the eigenvalues of A∗A being real numbers, the computation
shows that they are non-negative real numbers.

We let σi =
√
λi. The σi are called the singular values of A, and from the

computation above, we see that

σi = ‖Avi‖.

We may assume that the eigenvalues are labeled in such a way that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Usually we introduce the notation that σ1, . . . , σr > 0, and σi = 0 for i > r. We
shall show now that r = rankA so that r = n if and only if rankA = n.

Proposition 3.6.3 The number of positive singular values of a matrix A equals
its rank.
Proof 1. Proposition 3.4.3 shows that rankA = rankA∗A, so we need only show
that r = rankA∗A. Now recall that {v1, . . . , vn} is an orthonormal basis of Cn

consisting is eigenvectors for A∗A.
Now the rank of A∗A is the dimension of its range, the number of linearly inde-
pendent vectors in {A∗Av1, . . . , A

∗Avn}, and the rank-nullity theorem says that
since A∗Avi = 0 for i > r, we know the nullity is at least (n− r) and the rank at
most r. We need only show that {A∗Av1, . . . , A

∗Avr} is a linearly independent
set to guarantee the rank is r.
Suppose that

r∑
i=1

αiA
∗Avi = 0.

Since the vi are eigenvectors for A∗A, we deduce
r∑

i=1

αiλivi = 0,

and since the vi are themselves linearly independent, each coefficient αiλi = 0.
Since we are assuming that λi > 0 for i = 1, . . . , r, we conclude all the αi = 0,
making the desired set linearly independent, which establishes the result. ■

Proof 2. A slightly more direct proof that r = rankA begins by recalling that
σi = ‖Avi‖, so we know that Avi = 0 for i > r. Again by rank-nullity, we deduce
the rank is at most r and precisely is the number of linearly independent vectors
in {Av1, . . . , Avr}. In fact, we show that this is an orthogonal set of vectors, so
linearly independent by Proposition 3.2.2. Since {v1, . . . , vn} is an orthonormal
set of vectors, for j 6= k we know that vj and λkvk are orthogonal. We compute

〈Avk, Avj〉 = (Avj)
∗(Avk) = v∗jA

∗Avk = v∗j (λkvk) = λk〈vk, vj〉 = 0,

which gives the result. ■
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We summarize what is implicit in the second proof given above.

Corollary 3.6.4 Suppose that {v1, . . . , vn} is an orthonormal basis of Cn con-
sisting of eigenvectors for A∗A arranged so that the corresponding eigenvalues
satisfy λ1 ≥ · · · ≥ λn. Further suppose that A has r nonzero singular values.
Then {Av1, . . . , Avr} is an orthogonal basis for the column space of A, hence
rankA = r.

We are now only a few steps away from our main theorem:

Theorem 3.6.5 Let A ∈ Mm×n(C) with rank r and having singular values
σ1 ≥ · · · ≥ σn. Then there exists an m× n matrix

Σ =

[
D 0
0 0

]
where D =

 σ1 0
. . .

0 σr


and unitary matrices U ∈ Mm(C) and V ∈ Mn(C), so that

A = UΣV ∗.

Proof. Given A, we construct an orthonormal basis of Cn, {v1, . . . , vn}, consisting
of eigenvectors for A∗A arranged so that the corresponding eigenvalues satisfy
λ1 ≥ · · · ≥ λn. Note that the matrix V = [v1 v2 · · · vn] with the vi as its
columns is a unitary matrix.
By Corollary 3.6.4, we know that {Av1, . . . .Avr} is an orthogonal basis for the
column space of A and we have observed that σi = ‖Avi‖, so let

ui =
1

σi

Avi, i = 1, . . . , r.

Then {u1, . . . , ur} is an orthonormal basis for the column space of A which we
extend to an orthonormal basis {u1, . . . , um} of Cm. We let U be the unitary
matrix with orthonormal columns ui. We now claim that

A = UΣV ∗

where

Σ =

[
D 0
0 0

]
and D =

 σ1 0
. . .

0 σr

 .

Note that
AV = [Av1 · · · Avn] = [Av1 · · · Avr 0 · · · 0] = [σ1u1 · · · σrur 0 · · · 0]

and also that

UΣ = [u1, . . . um] =


σ1 0

. . .
0 σr

0

0 0

 = [σ1u1 . . . σrur 0 . . . 0]
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Thus
AV = UΣ,

and since V is a unitary matrix, multiplying both sides of the above equation on
the right by V −1 = V ∗ yields

A = UΣV ∗.
■

Remark 3.6.6 In complete analogy with Proposition 3.4.11, we have a spectral-
like decomposition of A :

A = UΣV ∗ = σ1u1v
∗
1 + · · ·+ σrurv

∗
r . (3.6.1)

Remark 3.6.7 A few things to notice about the SVD. First, let’s pause
to note how the linear maps version of the SVD is implicit in what we have
done above. We constructed an orthonormal basis {v1, . . . , vn} of Cn, defined
σi = ‖Avi‖, and for i ≤ r = rankA set u=

1

σi

vi. We noted {u1, . . . , ur} is an
orthonormal subset of Cm which we extended to an orthonormal subset of Cm.
So just from what we have seen above, we have

Avi =

{
σiui if 1 ≤ i ≤ r

0 if i > r.
.

What we shall see below is even more remarkable in that there is a duality
between A and A∗. We shall see that with the same bases and σi,

A∗ui =

{
σivi if 1 ≤ i ≤ r

0 if i > r.
.

There are some other important and useful things to notice about the con-
struction of the SVD. First is that matrices U, V are not uniquely determined
though the singular values are. In light of this, a matrix can have many singular
value decompositions all of equal utility.

Perhaps more interesting from a computational perspective and evident from
Equation (3.6.1) is that adding the vectors ur+1, . . . , um to form an orthonormal
basis of Cm is completely unnecessary in practice. One only uses u1, . . . , ur.

Now we are in desperate need of some examples. Let’s start with computing

an SVD of A =

 7 1
5 5
0 0

.

Example 3.6.8 A computation of a simple SVD. The process of computing
an SVD is very algorithmic, and we follow the steps of the proof.

Let A be the 3 × 2 matrix A =

 7 1
5 5
0 0

. Then A∗A = ATA is 2 × 2, so in
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the notation of the theorem, m = 3 and n = 2. It is also evident from inspecting
A that it has rank r = 2, so in this case we will have r = n = 2, so the general
form of Σ will be “degenerate” with the last n− r columns missing.

We compute
A∗A =

[
74 32
32 26

]
which has characteristic polynomial χA = (x− 10)(x− 90). The singular values
are σ1 =

√
90 ≥ σ2 =

√
10. Thus the matrix Σ has the form

Σ =

 3
√
10 0

0
√
10

0 0

 .

It follows from the spectral theorem that eigenspaces of a Hermitian matrix
associated to different eigenvalues are orthogonal, so we can find any unit vectors
v1, v2 which span the one-dimensional eigenspaces, and together they will form
an orthonormal basis for C2. We compute eigenvectors for A∗A by row reducing
A∗A− λiI2, and obtain:

Eigenvectors =
{[

2
1

]
,

[
−1
2

]}
7→ {v1, v2} =

{[
2/
√
5

1/
√
5

]
,

[
−1/

√
5

2/
√
5

]}
.

So, V =

[
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

]
.

For the matrix U , we first look at

Av1 =

 7 1
5 5
0 0

[ 2
1

]
=

 15
15
0

 7→ u1 =

 1/
√
2

1/
√
2
0

 ,

Av2 =

 7 1
5 5
0 0

[ −1
2

]
=

 −5
5
0

 7→ u2 =

 −1/
√
2

1/
√
2
0

 .

Finally we extend the orthonormal set {u1, u2} to an orthonormal basis for

C3, say {u1, u2, u3} =


 1/

√
2

1/
√
2
0

 ,

 −1/
√
2

1/
√
2
0

 ,

 0
0
1

.

Then with U =

 1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

, V =

[
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

]
, Σ = 3

√
10 0

0
√
10

0 0

 , we have

A =

 7 1
5 5
0 0

 = UΣV ∗
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=

 1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

 3
√
10 0

0
√
10

0 0

[ 2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]
.

□
Having computed the SVD:

A =

 7 1
5 5
0 0

 =

 1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

 3
√
10 0

0
√
10

0 0

[ 2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]
,

let’s see how Equation (3.6.1) is rendered:

A = UΣV ∗ = σ1u1v
∗
1 + · · ·+ σrurv

∗
r

=
√
90

 1/
√
2

1/
√
2
0

 [ 2/
√
5 1/

√
5
]
+
√
10

 −1/
√
2

1/
√
2
0

 [ −1/
√
5 2/

√
5
]

=
√
90

 2/
√
10 1/

√
10

2/
√
10 1/

√
10

0 0

+
√
10

 1/
√
10 −2/

√
10

−1/
√
10 2/

√
10

0 0


=

 6 3
6 3
0 0

+

 1 −2
−1 2
0 0

 =

 7 1
5 5
0 0

 .

We shall explore the significance of this kind of decomposition when we look at
an application of the SVD to image compression.

Before that, let’s summarize creating an SVD algorithmically, and then take
a look at what the decomposition can tell us.

3.6.3 An algorithm for producing an SVD
Given an m×n matrix with real or complex entries, we want to write A = UΣV ∗,
where U, V are appropriately sized unitary matrices (orthogonal if A has all real
entries), and Σ is a block matrix which encodes the singular values of A. We
proceed as follows:

1. The matrix A∗A is n×n and Hermitian (resp. symmetric if A is real), so it
can be unitarily (resp. orthogonally) diagonalized. So find an orthonormal
basis of eigenvectors {v1, . . . , vn} of A∗A labeled in such a way that the
corresponding (real) eigenvalues satisfy λ1 ≥ · · · ≥ λn. Set V to be the
matrix whose columns are the vi. Then we know that λ1

. . .
λn

 = V ∗(A∗A)V.
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This step probably involves the most work. It involves finding the char-
acteristic polynomial of A∗A, and for each eigenvalue λ, finding a basis
for the eigenspace for λ (i.e., the nullspace of (A∗A − λIn)), then using
Gram-Schmidt to produce an orthogonal basis for the eigenspace, and fi-
nally normalizing to produce unit vectors. Note that by Proposition 3.4.9,
eigenspaces corresponding to different eigenvalues of a Hermitian matrix
are automatically orthogonal, so working on each eigenspace separately
will produce the desired basis.
We shall review how to use Sage to help with some of these computations
in the section below.

2. Let σi =
√
λi and assume σ1 ≥ · · · ≥ σr > 0, σr+1 = · · · = σn = 0, knowing

that it is possible for r to equal n.

3. Remember that {Av1, . . . , Avr} is an orthogonal basis for the column space
of A, so in particular, r = rankA. Normalize that set via ui =

1

σi

Avi

and complete to an orthonormal basis {u1, . . . , ur, . . . , um} of Cm. Put
U = [u1 . . . um], the matrix with the ui as column vectors.

4. Then

A = UΣV ∗ = U


σ1 0

. . .
0 σr

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

V ∗.

3.6.4 Can an SVD for a matrix A be computed from AA∗

instead?
This is a very important question, but why? Well, suppose that A is m×n. Then
A∗A is n×n while AA∗ is m×m, but both matrices are Hermitian and the first
step of the SVD algorithm is to unitarily diagonalize a Hermitian matrix. If m
and n differ in size, it would be nice to do the hard work on the smaller matrix.
But we really did develop our algorithm based on using A∗A, so let’s see if we
can figure out how to use AA∗ instead.

We know that using the Hermitian matrix A∗A, we deduce an SVD of the
form

A = UΣV ∗ = U


σ1 0

. . .
0 σr

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

V ∗,
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with U, V unitary matrices. It follows that

A∗ = V Σ∗U∗ = V


σ1 0

. . .
0 σr

0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

U∗

where we note that upper r × r block of Σ∗ is the same as that of Σ since the
only nonzero entries in Σ are on the diagonal and are real.

Recall from Proposition 3.4.3 that the nonzero eigenvalues of A∗A and AA∗

are the same, which means the singular values (and hence the matrix Σ or Σ∗)
can be determined from either A∗A or AA∗. Also both U and V are unitary
matrices which means that

A∗ = V Σ∗U∗

is a singular value decomposition for A∗.
More precisely, if we put B = A∗ and compute an SVD for B, our algo-

rithm would have us start with the matrix B∗B = AA∗, and we would deduce
something like

B = A∗ = U1Σ1V
∗
1 .

Taking conjugate transposes would give

A = V1Σ
∗
1U

∗
1 ,

providing an SVD for A.

Example 3.6.9 Compute an SVD for a 2×3 matrix. To compute an SVD
for A =

[
1 2 3
3 2 1

]
, we have two choices: work with A∗A which is 3×3 or work

with AA∗ which is 2 × 2. Since we are doing the work by hand, we choose the
smaller example, but remember that in working with AA∗ we are computing an
SVD for B = A∗ and will have to reinterpet as above.

We check that B∗B = AA∗ =

[
14 10
10 14

]
, which has characteristic polyno-

mial ∣∣∣∣ 14− x 10
10 14− x

∣∣∣∣ = (14− x)2 − 100 = (x− 4)(x− 24).

So ordered in descending order, we have
λ1 = 24 ≥ λ2 = 4, (and) σ1 = 2

√
6 ≥ σ2 = 2

so the rank r = 2. It is easy to see that[
1
1

]
and

[
1

−1

]
are corresponding eigenvectors which we normalize as

v1 =
1√
2

[
1
1

]
and v2 =

1√
2

[
1

−1

]
.
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We now compute

u1 =
1

σ1

Bv1 =
1√
3

 1
1
1

 and u2 =
1

σ2

Bv2 =
1√
2

 −1
0
1

 ,

which we complete to an orthonormal basis for C3 with u3 =
1√
6

 1
−2
1

 .

Thus if we put

U =
1√
6

 √
2 −

√
3 1√

2 0 −2√
2

√
3 1

 and V =
1√
2

[
1 1
1 −1

]
,

we check that

B = U

 2
√
6 0
0 2
0 0

V ∗ =
1√
6

 √
2 −

√
3 1√

2 0 −2√
2

√
3 1

 2
√
6 0
0 2
0 0

 1√
2

[
1 1
1 −1

]
,

so that

A = B∗ = V Σ∗U∗ =
1√
2

[
1 1
1 −1

] [
2
√
6 0 0
0 2 0

]
1√
6

 √
2

√
2

√
2

−
√
3 0

√
3

1 −2 1

 .

□

3.6.5 Some Sage computations for an SVD

In the example above we computed an SVD for A =

[
1 2 3
3 2 1

]
by computing

an SVD for A∗ =

 1 3
2 2
3 1

 and converting, but since all the explicit work is for

B = A∗, we do our Sage examples using that matrix.
First we parallel our computations done above following our algorithm, and

then we switch to using Sage’s builtin SVD algorithm. Why waste time if we
can just go to the answer? It is probably better to judge for yourself.

First off, set up for pretty output and square brackets for delimeters, a style
choice. Next, enter and print the matrix B.

%display latex
latex.matrix_delimiters("[", "]")
B=matrix(QQbar ,[[1 ,3] ,[2 ,2] ,[3 ,1]])
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B

Form C = B∗B, our Hermitian matrix.

C=B.conjugate_transpose ()*B;C

Find the characteristic polynomial of B∗B, and factor it. Remember that all
the eigenvalues are guaranteed to be real and the eigenspaces will have dimension
equal to the algebraic multiplicities.

C.characteristic_polynomial ().factor ()

Ask Sage to give us the eigenvectors which, when normalized, will form the
columns of the matrix V. The output of the eigenmatrix_right() command
is a pair, the first entry is the diagonalized matrix, and the second the matrix
whose columns are the corresponding eigenvectors. It is useful to see both so as
to be sure the eigenvectors are listed in descending order of eigenvalues. Ours
are fine, so we let V be the matrix of (unnormalized) eigenvectors.

C.eigenmatrix_right ()

Next we grab the second entry in the above pair, the matrix of eigenvectors.

V=C.eigenmatrix_right ()[1]
V

Now we normalize the column vectors:

for j in range(V.ncols()):
w=V.column(j)
if w.norm() != 0 :

V[:,j] = w/w.norm()
V

Next we think about the U matrix. Technically, we have the orthonormal
vectors vi and need to find Bvi and normalize them by dividing by σi =

√
λi.

However, especially if doing pieces of the computation by hand so as to produce
exact arithmetic, we can simply apply B to the unnormalized eigenvectors and
normalize the result since the arithmetic (which we perform by hand) will be
prettier.

We already have eigenvectors
[
1
1

]
for λ1 = 24, and

[
1

−1

]
for eigenvalue

λ2 = 4, but we need to apply B to them, normalize the result and complete that
set to an orthogonal basis for C3. So we fast forward and have two orthogonal
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vectors Bv1 =

 1
1
1

 and Bv2 =

 −1
0
1

 . How do we find a vector orthogonal

to the given two?
The orthogonal bit is easy; we can Gram-Schmidt our way to an orthogonal

basis, but first we should choose a vector not in the span of the first two. Again
since we have a small example, this is easy, but the method we suggest is to build
a matrix with the first two rows the given orthogonal vectors, add a (reasonable)
third row and ask for the rank. Really, we need only invoke Gram-Schmidt, and
either we will have a third orthogonal vector or only the original two. We show
what happens in both cases.

We build a container for the orthogonal vectors.

%display latex
latex.matrix_delimiters("[", "]")
D= matrix(QQbar ,[[1,1,1],[-1,0,1],[0,0,0]]);D

First we add a row we know to be in the span of the first two; it is the sum
of the first two, and Gram-Schmidt kicks it out.

D[2]=[0 ,1 ,2];D

We see Gram-Schmidt knew the third row was in the span of the first two.

G,M=D.gram_schmidt ();G

Then we add a more reasonable row, and Gram-Schmidts produces an or-
thogonal basis.

D[2]=[1 ,0 ,2];D

G,M=D.gram_schmidt ();G

To produce the orthogonal (unitary) matrix U , we must normalize the vectors
and take the transpose to have the vectors as columns.

Sage also has the ability to compute an SVD directly once the entries of the
matrix have been converted to RDF or CDF (Real or Complex double precision).
This conversion can be done on the fly or by direct definition; we show both
methods. The algorithm outputs the triple (U,Σ, V ).

B=matrix(QQ ,[[1 ,3] ,[2 ,2] ,[3 ,1]])
B,B.change_ring(RDF).SVD()
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B=matrix(RDF ,[[1 ,3] ,[2 ,2] ,[3 ,1]])
B,B.SVD()

3.6.6 Deductions from seeing an SVD
Suppose that A is a 2× 3 real matrix and that A has the singular value decom-
position

A = UΣV ∗ =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

] [ √
6 0 0
0 0 0

] 1/
√
3 1/

√
3 −1/

√
3

1/
√
2 −1/

√
2 0

1/
√
6 1/

√
6 2/

√
6

 .

Question 3.6.10 What is the rank of A?

Answer. This is too easy. The rank r is the number of nonzero singular values,
so rankA = 1. □
Question 3.6.11 What is a basis for the column space of A?

Answer. Recall that {Av1, . . . , Avr} is a basis for the column space of A, and
normalized, those vectors are u1, . . . , ur, the first r columns of U. Since r = 1,

the set {u1} =

{[
1/
√
2

1/
√
2

]}
is a basis. □

Question 3.6.12 What is a basis for the kernel (nullspace) of A?

Answer. Hmmm. A bit trickier, or is it? The matrix A is 2× 3, meaning the
linear map LA defined by LA(x) = Ax is a map from C3 → C2. By rank-nullity,
we deduce that nullityA = 2, and how conviently (recall the singular values), we
have Av2 = Av3 = 0, which means {v2, v3} is a basis for the nullspace. □

3.6.7 SVD and image processing
Matlab was used to render a (personal) photograph into a matrix whose entries
are the gray-scale values 0-255 (black to white) of the corresponding pixels in
the original jpeg image. The photo-rendered matrix A has size 2216 × 1463,
and most likely is not something we want to treat by hand, but that is what
computers are for.

But suppose I hand the matrix A to some nice software and it returns an
SVD for A, say

A = UΣV ∗ = σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σrurv

∗
r .

Recall that σ1 ≥ σ2 ≥ · · ·, so that the most significant features of the image
(matrix) are conveyed by the early summands σiuiv

∗
i each of which is an m× n

matrix of rank 1. Now it turns out that the rank of our matrix A is r = 1463, so
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that is a long sum. What is impressive about the SVD is how quickly the early
partial sums reveal the majority of the critical features we seek to infer.

So let’s take a look at the renderings of some of these partial sums recalling
that it takes 1463 summands to recover the original jpeg image.

Here is the rendering of the first summand. Notice how all the rows (and
columns) are multiples of each other reflecting that the matrix corresponding to
this image has rank 1.

Figure 3.6.13 Image output from first summand of SVD
Here is the rendering of the partial sum of the three summands. Hard to

know what this image is.



CHAPTER 3. INNER PRODUCT SPACES 97

Figure 3.6.14 Image output using first three summands of SVD
Even with the partial sum of 5 summands, interpreting the image is prob-

lematic, but remember it takes 1463 to render all the detail. But also, once you
know what the image is, you will come back to this rendering and already see
essential features.

Figure 3.6.15 Image output using first five summands of SVD
Below are the renderings of partial sums with 10, 15, 25, 50, 100, 200, 500,
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1000, and all 1463 summands. Look at successive images to see how (and at what
stage) the finer detail is layered in. Surely with only 10 summands rendered,
there can be no question of what the image is.

Figure 3.6.16 Image output using first 10 summands of SVD

Figure 3.6.17 Image output using first 15 summands of SVD
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Figure 3.6.18 Image output using first 25 summands of SVD

Figure 3.6.19 Image output using first 50 summands of SVD
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Figure 3.6.20 Image output using first 100 summands of SVD

Figure 3.6.21 Image output using first 200 summands of SVD
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Figure 3.6.22 Image output using first 500 summands of SVD

Figure 3.6.23 Image output using first 1000 summands of SVD
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Figure 3.6.24 Original image (all 1463 summands)

3.6.8 Some parting observations on the SVD
Back in Theorem 3.2.17 and Corollary 3.2.18 we defined the so-called four fun-
damental subspaces. Let us see how they are connected via the singular value
decomposition of a matrix.

We started with an m× n matrix A having rank r, and an SVD of the form
A = UΣV ∗ :

[u1 · · · ur︸ ︷︷ ︸
ColA

ur+1 · · · um︸ ︷︷ ︸
kerA∗

]


σ1 0

. . .
0 σr

0

0 0





v∗1
...

v∗r
v∗r+1

...
v∗n



ColA∗

 kerA

(3.6.2)

We have the orthonormal basis {u1, . . . , um}for Cm of which {u1, . . . , ur} is
an orthonormal basis for ColA, the column space of A. So that means that
{ur+1, . . . , um} is an orthogonal subset of (ColA)⊥ = kerA∗ by Theorem 3.2.17.

By Corollary 3.2.11, we know that Cm = ColA⊞ (ColA)⊥, so

m = dimCm = dim ColA+ dim(ColA)⊥,

so dim(ColA)⊥ = m − r, and it follows that {ur+1, . . . , um} is an orthonormal
basis for (ColA)⊥ = kerA∗.
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Turning to the right side of the SVD, we know that

‖Avi‖ = σi for i = 1, . . . , n,

and by the choice of r, we know that

Avr+1 = · · · = Avn = 0.

Since the rankA = r, the nullityA = n − r which means that {vr+1, . . . , vn} is
an orthonormal basis for kerA.

Finally it follows that {v1, . . . , vr} is an orthonormal basis for (kerA)⊥ =
ColA∗. Note that when A is a real matrix, ColA∗ = ColAT = RowA.

In display (3.6.2), we have seen a certain symmetry between the kernels and
images of A and A∗, and in part we saw that above in Subsection 3.6.4 where
we used the SVD for A∗ to obtain one for A. We connect the dots a bit more
with the following observations.

In constructing an SVD for A = UΣV ∗, we had an orthonormal basis
{v1, . . . , vn} which were eigenvectors for A∗A with eigenvalues λi = σ2

i . Not-
ing that ‖Avi‖ = σi, we set ui =

1

σi

Avi for i = 1, . . . , r, observed it was an
orthormal set and extended in to an orthonormal basis {u1, . . . , um} for Cm.

From the definiton, ui =
1
σi
Avi we see that Avi = σiui. What do you think

A∗ui should equal?
We compute

A∗ui =
1

σi

A∗(Avi) =
1

σi

(A∗A)vi =
1

σi

λivi = σivi.

Thus we have the wonderfully symmetric relation:

Avi = σiui and A∗ui = σivi for i = 1, . . . , r.

Typically in a given singular value decompostion, A = UΣV ∗, the columns of
U are called the left singular vectors of A, while the columns of V are called
the right singular vectors.

3.7 Exercises (with solutions)

Exercises

1. Let W =




x1

x2

x3

x4

 ∈ R4

∣∣∣∣∣ x1 + 2x2 + 3x3 + 4x4 = 0

.

(a) Find bases for W and W⊥.

Solution. W is the solution space to Ax = 0 where A is the 1 × 4
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matrix A =
[
1 2 3 4

]
; it is a hyperplane in R4. We easily read

a set of independent solutions from the matrix A which is already in
reduced row-echelon form. Taking x2, x3, x4 as free variables, we may
take as a basis:

{w1, w2, w3} =




−2
1
0
0

 ,


−3
0
1
0

 ,


−4
0
0
1


 .

Thinking the four fundamental subspaces (Theorem 3.2.17), we know
that the

W⊥ = (kerA)⊥ = C(A∗) = Span




1
2
3
4


 .

If you did not recall that fact, it is clear that this vector is in W⊥,
but since

4 = dimR4 = dimW + dimW⊥,

we see we already have a spanning set.

(b) Find orthogonal bases for W and W⊥.

Solution. Since W⊥ = Span




1
2
3
4


 is one-dimensional, the

given basis is automatically an orthogonal basis.

For W, we use Gram-Schmidt: We take v1 = w1 =


−2
0
0
1

 , and

compute

v2 = w2 −
〈w2, v1〉
〈v1, v1〉

v1 =


−3/5
−6/5

1
0


and

v3 = w3 − · · · =


−2/7
−4/7
−6/7

1

 .
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(c) Find the orthogonal projection of b =


1
1
1
1

 onto the subspace W .

Hint. It is definitely worth noting that R4 = W⊞W⊥. The question
is, how to leverage that fact.

Solution. The issue we want to leverage is that

projW = IV − projW⊥ .

Since we know that W⊥ = Span {e} where e =


1
2
3
4

, we compute

projW⊥(b) =
〈b, e〉
〈e, e〉

e =
10

30


1
2
3
4

 =
1

3


1
2
3
4

 .

Now using the observation, we compute

projW (b) = b− projW⊥(b) =


1
1
1
1

− 1

3


1
2
3
4

 =
1

3


2
1
0

−1

 .

One alternative is that having gone to the trouble of finding an or-
thogonal basis for W, we could brute force the answer from Defini-
tion 3.2.13.
Other alternatives: if we made our orthogonal basis for W into an
orthonormal one, we could use Corollary 3.3.2. Or perhaps with a
bit less fuss, we could simply take advantage of Proposition 3.3.3 as
follows: Let

A =


−2 −3 −4
1 0 0
0 1 0
0 0 1

 .

Then

A(A∗A)−1A∗ =


29
30

− 1
15

− 1
10

− 2
15

− 1
15

13
15

−1
5

− 4
15

− 1
10

−1
5

7
10

−2
5

− 2
15

− 4
15

−2
5

7
15
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is the matrix of the projection map [projW ] with respect to the stan-
dard basis, so that

projW (b) = A


1
1
1
1

 =
1

3


2
1
0

−1

 .

I am pretty sure which method I prefer!

2. Let A =

 3 0 0
0 1 2
0 2 1

 ∈ M3(R).

(a) What observation tells you that A is diagonalizable without any com-
putation?

Solution. It is a real, symmetric matrix so not only is it diagonal-
izable, it is orthogonally diagonalizable.

(b) Compute the characteristic polynomial.

Solution.

χA = det(xI − A) = det

 x− 3 0 0
0 x− 1 −2
0 −2 x− 1

 = (x− 3)[(x− 1)2 − 4]

= (x− 3)(x2 − 2x− 3) = (x− 3)3(x+ 1).

(c) Determine a basis for each eigenspace.

Solution.

A+ I =

 4 0 0
0 2 2
0 2 2

 7→

 1 0 0
0 1 1
0 0 0

 7→ v1 =

 0
−1
1


A− 3I =

 0 0 0
0 −2 2
0 2 −2

 7→

 0 1 −1
0 0 0
0 0 0

 7→ v2 =

 1
0
0

 v3 =

 0
1
1



Note that v′3 =

 1
1
1

 is another obvious choice for an independent

eigenvector, though not as useful for a later part (since v2 and v3 are
orthogonal).

(d) Find a matrix P so that P−1AP is diagonal.
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Solution. The matrix P is any matrix with the eigenvectors as
columns. For example, if we want the diagonal matrix to be 3

3
−1

 choose P =

 1 0 0
0 1 −1
0 1 1

 ,

or if we want the diagonal matrix to be −1
3

3

 choose P =

 0 1 0
−1 0 1
1 0 1

 .

Other matrices are certainly possible.

(e) Determine whether the matrix A is orthogonally diagonalizable. If
not, why; if so, find an orthogonal matrix Q so that QTAQ is diagonal.

Solution. Since A is a real symmetric matrix, we know it is orthog-
onally diagonalizable. The columns of the matrices P above have
orthogonal columns. We need only normalize the columns, say

Q =

 0 1 0

−1/
√
2 0 1/

√
2

1/
√
2 0 1/

√
2

 .

3. View R7 as an inner product space with the usual inner product.
(a) let T : R7 → R7 be a linear map with the property that 〈T (v), v〉 = 0

for all v ∈ R7. Show that T is not invertible.

Hint. Calculus tells you that a polynomial of degree 7 and real
coefficients has at least one real root.

Solution. Let χT be the characteristic polynomial of T . Since the
degree is odd, the hint says χT has a real root, that is, T has a real
eigenvalue λ. Let v be a (nonzero) eigenvector with T (v) = λv. We
now consider the requirement that 〈T (v), v〉 = 0.

〈T (v), v〉 = 〈λv, v〉 = λ〈v, v〉 = 0.

Since v 6= 0, we cannot have 〈v, v〉 = 0, so we must have λ = 0, which
says zero is an eigenvalue, and hence the nullspace is nontrivial. This
means that T is not invertible.

(b) Show by example that there exist linear maps T : R2 → R2 with
〈T (v), v〉 = 0 for all v ∈ R2, but with T invertible. Verify that your
T satisfies the required conditions.

Hint. If we consider the previous part, the dimension only mattered
to produce a real eigenvalue, so that provides a direction to look.
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Solution. Let [T ]E =

[
0 1

−1 0

]
where E is the standard basis for

R2. Then χT = x2 +1 which has no real roots. In particular, 0 is not
an eigenvalue which means the nullspace is zero, so T is invertible.
We claim that 〈T (v), v〉 = 0 for all v ∈ V . We can read off the action
of T from the matrix:

T (e1) = −e2 and T (e2) = e1, so T (ae1 + be2) = be1 − ae2.

We check

〈T (ae1 + be2), ae1 + be2〉 = 〈be1 − ae2, ae1 + be2〉 = ba− ab = 0,

for all a, b.
4. Let V be a finite-dimensional real inner product space, and T : V →

V a linear operator satisfying T 2 = T , that is T (T (v)) = T (v) for all
v ∈ V . To eliminate trivial situations, assume that T is neither the zero
transformation, nor the identity operator.

(a) Show that the only possible eigenvalues of T are zero and one.

Solution. Suppose that T (v) = λv for some nonzero vector v. Then

T (v) = T 2(v) = T (T (v)) = T (λv) = λT (v),

so (λ−1)T (v) = 0, which means either λ = 1 (so one is an eigenvalue),
or T (v) = 0 which means the nullspace is not zero, hence zero is an
eigenvalue.

(b) Let Eλ denote the λ-eigenspace. Show that E0 = N(T ), the nullspace
of T , and that E1 is the image of T.

Solution. That E0 = N(T ) is the definition of E0 = {v ∈ V |
T (v) = 0 = 0v}.
If v ∈ E1, then T (v) = 1 · v, but then T (v) = v which says that
v ∈ R(T ). Conversely if w = T (v′) ∈ R(T ), then T (w) = T 2(v′) =
T (v′) = w, so w ∈ E1. Thus the image is precisely E1.

(c) Show that T is diagonalizable.

Solution. dimE0 equals the nullity of T , and from above dimE1 is
the rank, so by rank-nullity, the sum of the sizes of the eigenspaces
(which have trivial intersection) is the dimension of the space, so V
has a basis of eigenvectors for T.

(d) Let W be a subspace of V, and let S = projW be the orthogonal projec-
tion onto the subspace W. Show that S2 = S, so that the orthogonal
projection is one linear map satisfying the given property.
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Solution. By definition, we take an orthonormal basis for W (say
having dimension r), and extend it to an orthonomal basis B = {vi}
for V . Then S(v) =

∑r
i=1〈v, vi〉vi = w and by Theorem 3.2.10 we

know that v = w⊥ + w for unique w⊥ ∈ W⊥. Since S(v) = w ∈ W
and w = w + 0, S(w) = w (Corollary 3.2.14), that is S2(v) = S(v).

5. Let A =


1 0 −1

−4 1 6
0 −5 −9
1 5 8

 and b =


1
2
3
4

 .

In answering the questions below, you may find some of the information
below of use. By rref(X) we mean the reduced row-echelon form of the
matrix X.

rref(A) =


1 0 0
0 1 0
0 0 1
0 0 0

 rref(A|b) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



ATA =

 18 1 −17
1 51 91

−17 91 182

 , AT b =

 −3
7
16

 , rref(ATA|AT b) =

 1 0 0 74
0 1 0 −128
0 0 1 71



AAT =


2 −10 9 −7

−10 53 −59 49
9 −59 106 −97

−7 49 −97 90

 , AAT b =


−19
115

−179
160

 , rref(AAT |AAT b) =


1 0 0 1 5
0 1 0 0 2
0 0 1 −1 −1
0 0 0 0 0


(a) Show that the system Ax = b is inconsistent.

Solution. We see that rref(A|b) has a pivot in the augmented col-
umn, meaning the system is inconsistent.

(b) Find a least squares solution to the system Ax = b.

Solution. A least squares solution to Ax = b is obtained by solving
the consistent system ATAx = AT b. From the work above, we read

off the solution x =

 74
−128

71

 .

6. Suppose a real matrix has SVD given by A = UΣV T :

A =

 0 1 0
1 0 0
0 0 1

 √
3 0 0 0

0
√
2 0 0

0 0 0 0




1/
√
3 1/

√
3 1/

√
3 0

1/
√
2 0 −1/

√
2 0

1/
√
6 −2/

√
6 1/

√
6 0

0 0 0 1

 .

(a) Using only your knowledge of the SVD (and no compuation), deter-
mine rankA.
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Solution. The rank is two since there are precisely two nonzero
singular values,

√
3 and

√
2.

(b) Using only your knowledge of the SVD, give a basis for the kernel
(nullspace) of A; explain your process.

Solution. The SVD process begins by finding an orthonormal basis
{v1, . . . , v4} for ATA. With σi = ‖Avi‖ and the rank of A equaling
2, we know the nullity of A is also two, and since Av3 = Av4 = 0,
{v3, v3} gives an orthogonal basis for the kernel.

(c) Using only your knowledge of the SVD, give a basis for the column
space of A, explaining your process.

Solution. The column space is spanned by {Av1, . . . , Avr} where
r = rankA = 2, so {Av1, Av2} is an (orthogonal) basis for the column
space.

7. Let A have singular value decomposition

A = UΣV T =

[
2/
√
5 1/

√
5

1/
√
5 −2/

√
5

] [
8 0
0 2

] [
1/
√
5 2/

√
5

2/
√
5 −1/

√
5

]
.

(a) Prove that A is invertible.

Solution. A is a 2× 2 matrix with two nonzero singular values, so
has rank 2, and so is invertible. Alternatively, it is easy to show that
detA 6= 0.

(b) Using the given SVD, find an expression for A−1.

Solution. A = UΣV T implies that A−1 = (V T )−1Σ−1U−1 =

V

[
1/8 0
0 1/2

]
UT since both U and V are orthogonal matrices.

(c) The goal of this part is to find an SVD for A−1. You should express
your answer (confidently) as an appropriate product of matrices with-
out multiplying things out, though you should explain why the ex-
pression you write represents an SVD for A−1. In particular, a couple
of warm up exercises will help in this endeavor, and no, the answer
in part b is not the correct answer.

• First show that the product of two orthogonal matrices in Mn(R)
is orthogonal.

• Next show that the diagonal matrices (with real entries)[
λ1 0
0 λ2

]
and

[
λ2 0
0 λ1

]
are orthogonally equivalent, i.e., that

there exists an orthogonal matrix P so that[
λ1 0
0 λ2

]
= P

[
λ2 0
0 λ1

]
P T .
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• Now you should be able to proceed using your answer from part
b as a starting point.

Solution.

• For the first warm up, suppose that AAT = In = BBT . Then

(AB)(AB)T = ABBTAT = AInA
T = AAT = In.

• For the second warm up, one can choose

P =

[
0 1
1 0

]
,

but an explanation would be nice. It should be clear that the
standard basis vectors e1, e2 for R2 are eigenvectors for the ma-
trix.

[
λ1 0
0 λ2

]
. It follows that the matrix P with columns

e2, e1 is also a matrix of eigenvectors, but which reverses the
order of appearance of the eigenvalues.

• Now for the main event: The expression for A−1 in the previous
part would be an SVD for A−1 but for the fact that the singular
values do not satisfy σ1 > σ2. Fortunately the warm up exercises
come to the rescue! We see that[

1/2 0
0 1/8

]
=

[
0 1
1 0

] [
1/8 0
0 1/2

] [
0 1
1 0

]
,

and that Q =

[
0 1
1 0

]
is an orthogonal matrix with QT = Q,

hence by the warm ups, so are the matrices QUT = (UQT )T =
(UQ)T and V Q. Thus

A−1 = (V T )−1Σ−1U−1 = V

[
1/8 0
0 1/2

]
UT = (V Q)

[
1/2 0
0 1/8

]
(UQ)T

is an SVD for A−1.



Chapter 4

Definitions and Examples

Here we accumulate basic definitions and examples from a standard first course
in linear algebra.

4.1 Basic Definitions and Examples
Listed in alphabetical order.
Definition 4.1.1 Given an n × n matrix A with eigenvalue λ, the algebraic
multiplicity of the eigenvalue is the degree d to which the term (x−λ)d occurs
in the factorization of the characteristic polynomial for A. ♢
Definition 4.1.2 An basis for a vector space is a linearly independent subset
of the vector space whose span is the entire space. ♢
Example 4.1.3 Some standard bases for familiar vector spaces.

• The standard basis for F n is B = {e1, . . . , en} where ei is the column
vector in F n with a 1 in the ith coordinate and zeroes in the remaining
coordinates.

• A standard basis for Mm×n(F ) is

B = {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

where Eij is the m× n matrix with a 1 in row i and column j, and zeroes
in all other entries.

• A standard basis for Pn(F ) is B = {1, x, x2, . . . , xn}, and a standard basis
for P (F ) = F [x] is B = {1, x, x2, x3, . . . }.

□
Definition 4.1.4 The characteristic polynomial of a square matrix A ∈
Mn(F ) is χA = det(xIn − A). One can show that χA is a monic polynomial of
degree n with coefficients in the field F.

112
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Note that some authors define the characteristic polynomial as det(A− xIn)
in which case the leading coefficient is (−1)n, but since the interest is only in
the factorization of χA (in particular any roots it may have), it does not really
matter which definition one uses. ♢
Definition 4.1.5 The column space of an m× n matrix A is the span of the
columns of A. As such, it is a subspace of Fm. ♢
Definition 4.1.6 Given an m×n matrix A with complex entries, the conjugate
transpose of A is the n×m matrix A∗ whose ij-entry is given by

(A∗)ij = Aji = (AT )ij.

♢
Definition 4.1.7 The dimension of a vector space is the cardinality (size) of
any basis for the vector space.

Implicit in the definition of dimension are theorems which prove that every
vector space has a basis, and that any two bases for a given vector space have
the same cardinality. In other words, the dimension is a well-defined term not
depending upon which basis is chosen to consider. When a vector space has a
basis with a finite number of elements, it is called finite-dimensional. ♢
Definition 4.1.8 An elementary matrix is a matrix obtained by performing
a single elementary row (or column) operation to an identity matrix. ♢
Definition 4.1.9 Elementary row (respectively column) operations on
a matrix are one of the following:

• Interchange two rows (resp. columns) of A.

• Multiply a row (resp. column) of A by a nonzero scalar.

• Replace a given row (resp. column) of A by the sum of the given row (resp.
column) and a multiple of a different row (resp. column).

♢
Definition 4.1.10 Given an n× n matrix A with eigenvalue λ, the geometric
multiplicity of the eigenvalue is the dimension of the eigenspace associated to
λ. ♢
Definition 4.1.11 A complex matrix A is called Hermitian if A = A∗. Neces-
sarily the matrix needs to be square. ♢
Definition 4.1.12 The image of a linear map T : V → W is

Im(T ) := {w ∈ W | w = T (v) for some v ∈ V }.

The image of T is a subspace of W ; T is surjective if and only if W = Im(T ). ♢
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Definition 4.1.13 A function f : X → Y between sets X and Y is injective if
for every x, x′ ∈ X, f(x) = f(x′) implies x = x′. ♢
Definition 4.1.14 Let F denote the field of real or complex numbers. For
z = a + bi ∈ C (a, b ∈ R and i2 = −1), we have the notion of the complex
conjugate of z, denoted z = a − bi. Note that when z ∈ R, that is z = a =
a+0i ∈ C, we have z = z. The magnitude (norm, absolutevalue) of z = a+ bi
is |z| =

√
a2 + b2.

Let V be a vector space over the field F. An inner product is a function:

〈·, ·〉 : V × V → F

so that for all u, v, w ∈ V and λ ∈ F :

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. 〈λv, w〉 = λ〈v, w〉

3. 〈v, w〉 = 〈w, v〉, where the bar denotes complex conjugate.

4. 〈v, v〉 is a positive real number for all v 6= 0.

♢
Definition 4.1.15 An inner product space is a vector space V defined over a
field F = R or C to which is associated an inner product. If F = R, V is called
a real inner product space, and if F = C, then V is called a complex inner
product space. ♢
Definition 4.1.16 An isomorphism is a linear map which is bijective (one-to-
one and onto; injective and surjective). ♢
Definition 4.1.17 The Kronecker delta is defined by

δij =

{
1 if i = j

0 otherwise.

♢
Definition 4.1.18 A linear combination of vectors v1, . . . , vr ∈ V is any
vector of the form a1v1 + · · ·+ arvr for scalars ai ∈ F. ♢
Definition 4.1.19 Let S ⊆ V be a subset of vectors in a vector space V (finite
or infinite). The set S is a linearly dependent subset of V if it is not linearly
independent, that is there exists a finite subset {v1, . . . , vr} ⊆ S, and nonzero
scalars a1, . . . , ar so that

a1v1 + · · ·+ arvr = 0.

♢
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Definition 4.1.20 Let S ⊆ V be a subset of vectors in a vector space V (finite
or infinite). The set S is a linearly independent subset of V if for every finite
subset {v1, . . . , vr} ⊆ S, a linear dependence relation of the form

a1v1 + · · ·+ arvr = 0

forces all the scalars ai = 0. ♢
Definition 4.1.21 Given two vector spaces V and W (defined over the same
field F ), a linear map (or linear transformation) from V to W is a function
T : V → W which is

• additive: T (v + v′) = T (v) + T (v′) for all v, v′ ∈ V , and

• preserves scalar multiplication: T (λv) = λT (v) for all vectors v ∈ V and
scalars λ.

♢
Definition 4.1.22 The minimal polynomial of a square matrix A ∈ Mn(F )
is the monic polynomial, µA, of least degree with coefficients in the field F so
that µA(A) = 0. The Cayley-Hamilton theorem implies that the minimal
polynomial divides the characteristic polynomial. ♢
Definition 4.1.23 A matrix A ∈ Mn(C) is normal if it commutes with its
conjuate transpose: AA∗ = A∗A. ♢
Definition 4.1.24 The nullity of a linear transformation T : V → W is the
dimension of ker(T ), that is, the dimension of its nullspace.

If T : F n → Fm is given by T (x) = Ax for an m × n matrix A, then the
nullity of T is the dimension of the set of solutions of Ax = 0. ♢
Definition 4.1.25 The nullspace of a linear transformation T : V → W is the
kernel of T that is,

ker(T ) = {v ∈ V | T (v) = 0W}.

If T : F n → Fm is given by T (x) = Ax for an m × n matrix A, then the
nullspace of T is often called the nullspace of A, the set of solutions of Ax = 0.

♢
Definition 4.1.26 A matrix A ∈ Mn(R) is an orthogonal matrix if

ATA = AAT = In.

Note that the condition ATA = In is equivalent to saying that the columns of A
form an orthonormal basis for Rn, while the condition AAT makes the analogous
statement about the rows of A. ♢
Definition 4.1.27 The pivot positions of a matrix are the positions
(row,column) which correspond to a leading one in the reduced row-echelon form
of the matrix. The pivots are the actual entry of the given matrix at the pivot



CHAPTER 4. DEFINITIONS AND EXAMPLES 116

position.
The pivot columns are the columns of the original matrix corresponding

to the columns of the RREF containing a leading one. ♢
Definition 4.1.28 The rank of a linear transformation T : V → W is the
dimension of its image, Im(T ).

If T : F n → Fm is given by T (x) = Ax for an m×n matrix A, then the rank
of T is the dimension of the column space of A.

By theorem, it is also equal to the dimension of the row space which is the
number of nonzero rows in the RREF form of the matrix A. ♢
Definition 4.1.29 The row space of an m×n matrix A is the span of the rows
of A. As such, it is a subspace of F n. ♢
Definition 4.1.30 Let A,B ∈ Mn(F ). The matrix B is said to be similar
(or conjugate) to A if there exists an invertible matrix P ∈ Mn(F ) so that
B = P−1AP. Note that if we put Q = P−1, then B = QAQ−1, so it does
not matter which side carries the inverse. Also note that this is a symmetric
relationship, so that B is similar to A if and only if A is similar to B. Indeed
similarity (conjugacy) is an equivalence relation. ♢
Definition 4.1.31 Let S ⊆ V be a subset of vectors in a vector space V (finite
or infinite). The span of the set S, denoted Span(S), is the set of all finite linear
combinations of the elements of S. That is to say

Span(S) = {a1v1 + · · ·+ arvr | r ≥ 1, ai ∈ F, vi ∈ S}

♢
Definition 4.1.32 Let V be a vector space over a field F, and let W ⊆ V . W
is called a subspace of V if W is itself a vector space with the operations of
vector addition and scalar multiplication inherited from V.

Of course checking all the vector space axioms can be quite tedious, but
as a theorem you prove much easier criteria to check. Recall that you already
know that V is a vector space, so many of the axioms (associativity, distributive
laws etc) are inherited from V. Indeed, you prove that to show that W is a
subspace of V , it is enough to show that the additive identity of V is in W, and
that W is closed under the inherited operations of vector addition and scalar
multiplication, i.e, whenever w,w′ ∈ W and λ ∈ F , we must have w + w′ ∈ W ,
and λw ∈ W. ♢
Definition 4.1.33 A function f : X → Y between sets X and Y is surjective
if for every y ∈ Y , there exists an x ∈ X such that f(x) = y. ♢

Definition 4.1.34 A matrix A is called symmetric if A = AT . Necessarily the
matrix needs to be square. ♢
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Definition 4.1.35 Given a square matrix A ∈ Mn(F ), we define its trace to
be the scalar

tr(A) :=
n∑

i=1

Aii.

♢
Definition 4.1.36 A matrix A ∈ Mn(C) is an unitary matrix if

A∗A = AA∗ = In.

Note that the condition A∗A = In is equivalent to saying that the columns of A
form an orthonormal basis for Cn, while the condition AA∗ makes the analogous
statement about the rows of A. ♢
Definition 4.1.37 A vector space is a non-empty set V and an associated
field of scalars F , having operations of vector addition, denoted +, and scalar
multiplication, denoted by juxtaposition, satisfying the following properties: For
all vectors u, v, w ∈ V , and scalars λ, µ ∈ F

• closure under vector addition

• u+ v ∈ V

• addition is commutative

• u+ v = v + u

• addition is associative

• (u+ v) + w = u+ (v + w)

• additive identity

• There is a vector 0 ∈ V so that
0 + u = u.

• additive inverses

• For each u ∈ V , there is a vector
denoted −u ∈ V so that u+−u =
0.

• closure under scalar multipli-
cation

• λu ∈ V.

• scalar multiplication distrib-
utes across vector addition

• λ(u+ v) = λu+ λv

• distributes over scalar addi-
tion

• (λ+ µ)v = λv + µv

• scalar associativity

• (λµ)v = λ(µv)

• V is unital

• The field element 1 ∈ F satisfies
1v = v.

♢
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