My Greatest Theorem So Far
 Jumpin' Jack Flash * (Second author information if needed)

21 February 2002 - 16:05 - Preliminary Version

This is dedicated to the one I love

Abstract

This is a great paper. Read no further, because I don't want you to hurt yourself, but if you can't help yourself, better strap in. It gets bumpy from here on in.

1 Section One

Here is the very top of my logo
Here is the very bottom of my logo.
A test document from Dartmoth homepage!

1.1 Subsection One Dot One

Hello, this is section 1.1

1.2 Subsection One Dot Two

And here we have section 1.2; here's a link to another Document (Other.pdf), which probably does not exist (but that's OK).

2 Section Two

sfsddsf

3 Introduction

The results which follow will dwarf all others that have come before. It amazes me that I have been able to write them down. I know that you too will be duely impressed.

4 Preliminaries

What! You don't know what I'm talking about!!
Let's try a little fraktur $\mathfrak{A B C}$. Let's try a little black board bold $\mathbb{Z}, \mathbb{P}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Let's try some other symbols like $x \gg 0$ or \otimes. How about $M \otimes_{\mathbb{Z}} N$ or $\mathbb{Z}^{\mathbb{Z}^{\mathbb{Z}}}$?

How about $p \nmid N$ or \boxplus ?

[^0]
5 Some sample theorems

Lemma 5.1. Let's put here exactly what we need to prove the next theorem.
Theorem 5.2. Let f be a nonzero element of $S_{k / 2}(4 N, \psi)$. Then there exist an infinite number of square-free positive integers t such that $\mathbf{S}_{t}(f) \neq 0$.

Draft Remark 1. The proof which is below is correct, but unmotivated. Perhaps we can find an alternate proof which provides more insight

Proof. If $\mathbf{S}_{t}(f)=0$ for all but a finite number of square-free positive integers t, then by Lemma ?? the Fourier coefficients of f are supported on only a finite number of square classes. By Theorem 3 of [?] the weight of f must be $1 / 2$ of $3 / 2$ and at weight $3 / 2$ must be in the span of the theta series h_{ψ}, contrary to assumption.

By Theorem ??, we see that it we can always find nonzero Shimura lifts.
Definition 5.3. A horse is a horse of course, of course, but noone can talk to a horse of course
Here we have some displayed and aligned equations.
Here is an unnumbered displayed equation:

$$
T(m) T(n)=\sum_{d \mid(m, n)} d^{k-1} \chi(d) T\left(m n / d^{2}\right)
$$

Here is a numbered displayed equation:

$$
\begin{equation*}
T(m) T(n)=\sum_{d \mid(m, n)} d^{k-1} \chi(d) T\left(m n / d^{2}\right) \tag{5.1}
\end{equation*}
$$

Here is the same expression, but inline and not displayed. Notice it is set smaller and the summation indeices are placed differently: $T(m) T(n)=\sum_{d \mid(m, n)} d^{k-1} \chi(d) T\left(m n / d^{2}\right)$. Note I need to use $\$$ to surround my formula when in an inline mode.

For an aligned display we have

$$
\begin{aligned}
& \Lambda_{N}(s ; f)=\left(\frac{2 \pi}{\sqrt{N}}\right)^{-s} \Gamma(s) L(s ; f) \\
& \Lambda_{M}(s ; g)=\left(\frac{2 \pi}{\sqrt{M}}\right)^{-s} \Gamma(s) L(s ; g)
\end{aligned}
$$

A numbered version is given by

$$
\begin{align*}
& \Lambda_{N}(s ; f)=\left(\frac{2 \pi}{\sqrt{N}}\right)^{-s} \Gamma(s) L(s ; f) \tag{5.2}\\
& \Lambda_{M}(s ; g)=\left(\frac{2 \pi}{\sqrt{M}}\right)^{-s} \Gamma(s) L(s ; g) \tag{5.3}
\end{align*}
$$

A version with only one number associated to the group of equations is given by

$$
\begin{align*}
& \Lambda_{N}(s ; f)=\left(\frac{2 \pi}{\sqrt{N}}\right)^{-s} \Gamma(s) L(s ; f) \tag{5.4}\\
& \Lambda_{M}(s ; g)=\left(\frac{2 \pi}{\sqrt{M}}\right)^{-s} \Gamma(s) L(s ; g)
\end{align*}
$$

Something with cases

$$
\phi_{p}(s)= \begin{cases}\left(\frac{1-b(p) p^{-s}+\psi(p) p^{k-1-2 s}}{1-a(p) p^{-s}+\chi(p) p^{k-1-2 s}}\right) & \text { if } p \mid L \\ 1 & \text { if } p \nmid L .\end{cases}
$$

Draft Remark 2. This should be more than enough displayed equations for the average person. Gosh, I sure hope this paper gets accepted. More remarks of little permanent consequence.

Theorem 5.4. Suppose that N is an odd positive integer and ψ is an even Dirichlet character defined modulo $4 N$. Let $F \in S_{k-1}^{+}\left(N, \psi^{2}\right) \cup S_{k-1}^{+}\left(2 N, \psi^{2}\right)$ be a normalized newform, and suppose that $S_{k / 2}(4 M, \psi, F) \neq 0$ for some $M \mid N$. Then

1. $M=N$
2. $S_{k / 2}^{-}(4 N, \psi) \cap S_{k / 2}(4 N, \psi, F)=\{0\}$, and so $S_{k / 2}(4 N, \psi, F) \subset S_{k / 2}^{+}(4 N, \psi)$.
3. If N is square-free and $\psi^{2}=1$, then $S_{k / 2}^{+}(4 N, \psi)_{K} \subset S_{k / 2}^{+}(4 N, \psi)$.

Let's get the other references in now. See [?] and [?].

References

[1] B. Cipra, On the Niwa-Shintani Theta-Kernel Lifting of Modular Forms, Nagoya Math. J., 91, (1983), 49-117.
[2] N. Koblitz, "Introduction to Elliptic Curves and Modular Forms", Springer-Verlag, New York, 1984.
[3] J.-P. Serre and H. Stark, Modular Forms of Weight 1/2, In Lecture Notes in Math. 627, Springer-Verlag, Berlin and New York, (1977), 27-67.

Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
E-mail address: Jumpin'.Jack.Flash@dartmouth.edu
URL: http://www.math.dartmouth.edu/~trs/
You could also click on the following number to jump to the first page, namely page ??...

[^0]: *Supported in part by Trussmaster
 1991 Mathematics Subject Classification. Primary 11Fxx; Secondary 11Fxx
 Key Words and Phrases. Maximal Order, Central Simple Algebra, Bruhat-Tits Building

