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Abstract

In this paper we investigate both arithmetic and combinatorial aspects of buildings
and associated Hecke operators for Spn(K) with K a local field. We characterize
the action of the affine Weyl group in terms of a symplectic basis for an apartment,
characterize the special vertices as those which are “self-dual” with respect to the
induced inner product, and finally establish a one-to-one correspondence between the
special vertices in an apartment and the elements of the quotient Zn+1/Z(2, 1, . . . , 1).

We then give a natural representation of the local Hecke algebra over Qp acting
on the special vertices of the Bruhat-Tits building for Spn(Qp). Finally, we give an
application of the Hecke operators defined on the building by characterizing minimal
walks on the building for Spn.

1 Introduction

Buildings play a large role in the study of classical groups, and in particular a role in the study
of Hecke algebras associated to these groups. In [5], Serre defined Hecke operators acting
on trees (the building associated to SL2 over a local field), and this work was generalized
to SLn in [2]. In this paper we investigate both arithmetic and combinatorial aspects of
buildings and associated Hecke operators for Spn(K) with K a local field.

Compared to the theory of buildings for the special linear group, the theory for the
symplectic group is far less developed, so the first part of this paper is devoted to giving
more concrete characterizations of the vertices in an apartment with particular attention to
so-called special vertices. We note that in the case of SLn all vertices in the building are
special. We characterize the action of the affine Weyl group in terms of a symplectic basis for
an apartment, characterize the special vertices as those which are “self-dual” with respect
to the induced inner product, and finally establish a one-to-one correspondence between the
special vertices in an apartment and the elements of the quotient Zn+1/Z(2, 1, . . . , 1).
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We next establish connections between the symplectic elementary divisor theory of lat-
tices over the ring of integers O of K and double cosets of the group Γ = Spn(O). Using
this correspondence, we define Hecke operators on the building which act as generalized
adjacency operators on the underlying graph. We then give a natural (essentially faithful)
representation of the local Hecke algebra over Qp acting on the special vertices of the Bruhat-
Tits building for Spn(Qp). Finally, we give an application of the Hecke operators defined on
the building by characterizing minimal walks on (the one-subcomplex of) the building for
Spn.

2 The building for Spn

In this section we consider the building for Spn over a local field, and give intrinsic charac-
terizations of its apartments and special vertices. In particular, we give a concrete charac-
terization of the action of the affine Weyl group, C̃n, in terms of a symplectic basis for an
apartment. Moreover, after associating each vertex with a homothety class of a lattice in
the symplectic space, we show that special vertices are precisely those in the building which
are “self-dual” with respect to the induced inner product. For our application to walks on
the building, we further establish a one-to-one correspondence between the special vertices
in an apartment and the elements of Zn+1/Z(2, 1, . . . 1). The induced group structure will
be interpreted in terms of special vertices in the section on walks on the building.

Throughout, let K be a local field, O its ring of integers, π ∈ O a uniformizing parameter,
k = O/πO the residue field, and (V, 〈∗, ∗〉) be a symplectic (non-degenerate alternating)
space of dimension 2n over K. Define the group of symplectic similitudes of K by

GSpn(K) = {M = ( A B
C D ) ∈ M2n(K) | AtC = CtA, BtD = DtB, AtD − CtB = r(M)I2n}

= {M = ( A B
C D ) ∈ M2n(K) | ABt = BtA, CDt = DCt, ADt − BCt = r(M)I2n}

where r(M) ∈ K×. Now let S = K×/O×; for convenience, we take S = {πν | ν ∈ Z}.
We will denote by GSpS

n(K) = {M ∈ GSpn(K) | r(M) ∈ S}. It is useful to note that
Spn(K) ⊂ GSpS

n(K). Finally, let Γ = Spn(O).

The Bruhat-Tits building for Spn(K) is an n-dimensional simplicial complex, ∆n, whose
vertices are homothety classes of lattices in V . One defines an incidence relation on the
vertices, and the resulting flag complex is the building. Generally our focus will be on an
apartment in the building for which we need a careful understanding of how the vertices are
indexed by classes of lattices. Some of the basic material can be found in Chapter 20 of [3],
which we supplement where germane.

Definition 2.1. An O-lattice Λ ⊂ V is a free O-module of rank n, and is called primitive if
〈Λ, Λ〉 ⊆ O and 〈∗, ∗〉 induces a non-degenerate form on the alternating space Λ/πΛ over k.

Following [3], we first give a general description of the building. We describe an
apartment system for the building as follows (see [3]). A frame is an unordered n-tuple
{λ1

1, λ
2
1}, . . . , {λ

1
n, λ

2
n} of pairs of lines {λ1

i , λ
2
i } so that V =

∑n
1 (λ1

i + λ2
i ), (λ1

i + λ2
i ) is
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orthogonal to (λ1
j + λ2

j) for i 6= j, and each (λ1
i + λ2

i ) is a hyperbolic plane. We say that
the frame determines the apartment Σ. Vertices in Σ are homothety classes of lattices,
denoted [Λ]. A vertex [Λ] lies in Σ (determined by the above frame), if there are free
O-modules M j

i ⊂ λj
i so that Λ = ⊕i,jM

j
i for some (and hence every) representative Λ of

the homothety class. More concretely, vertices of the building are homothety classes of
lattices [Λ] which possess a representative Λ such that: there exists a lattice Λ0 with π−1Λ0

primitive, Λ0 ⊆ Λ ⊆ π−1Λ0, and 〈Λ, Λ〉 ⊆ πO; or equivalently, Λ/Λ0 is a totally isotropic
k-subspace of the non-degenerate alternating space π−1Λ0/Λ0. Now to define the building,
we start with the set of vertices, and define an incidence relation on them as follows: For
vertices t, t′, we say t ∼ t′ if there are lattices Λt ∈ t and Λt′ ∈ t′ and a lattice Λ0 such that
π−1Λ0 is primitive, Λ0 ⊆ Λt ⊆ π−1Λ0, πΛ0 ⊆ Λt′ ⊆ π−1Λ0, and either Λt ⊂ Λt′ or Λt′ ⊂ Λt.
The associated flag complex yields the building. The maximal simplices (chambers) are un-
ordered (n+1)-tuples [Λ0], [Λ1] . . . , [Λn] of homothety classes of lattices with representatives
Λi satisfying: π−1Λ0 is primitive, Λ0 ⊆ Λi ⊆ π−1Λ0, and Λ1/Λ0 ⊂ Λ2/Λ0 ⊂ · · · ⊂ Λn/Λ0 is a
maximal isotropic flag of k-subspaces in π−1Λ0/Λ0.

Now we establish a more concrete realization of the apartment. Fix a symplectic basis
{u1, w1, . . . , un, wn} of V (〈ui, wi〉 = 1, 〈ui, ui〉 = 〈wi, wi〉 = 0), and let Λ be the O-lattice
Λ = Oπa1u1⊕· · ·⊕Oπanun⊕Oπb1w1⊕· · ·⊕Oπbnwn. With the basis fixed, we often denote this
lattice as (πa1 , . . . πan ; πb1, . . . , πbn). We note that 〈Λ, Λ〉 ⊆ O iff 〈πaiui, π

biwi〉 = πai+bi ∈ O
which is true iff ai + bi ≥ 0. Given ai + bi ≥ 0, the induced alternating form on Λ/πΛ is
non-degenerate over k = O/πO iff ai + bi = 0 for all i.

Example 2.2. Let {u1, . . . , un, w1, . . . , wn} be a symplectic basis for V (with 〈ui, wi〉 = 1),
and put λ1

i = Kui and λ2
i = Kwi. The frame {λ1

i , λ
2
i } defines an apartment Σ. Let Λ0 =

π(⊕Oui ⊕ Owi). Then π−1Λ0 is primitive. Denote by [πa1 , . . . , πan; πb1 , . . . , πbn] the class
of the lattice Oπa1u1 ⊕ · · · ⊕ Oπanun ⊕ Oπb1w1 ⊕ · · · ⊕ Oπbnwn. Then the following flags
determine (fundamental) chambers in Σ.

[Λ0] = [π, . . . , π; π, . . . , π] ⊂ [Λ1] = [1, π, . . . , π; π, . . . , π] ⊂ [Λ2] = [1, 1, π, . . . , π; π, . . . , π] ⊂
· · · ⊂ [Λn] = [1, 1, . . . , 1; π, . . . , π].

[Λ0] = [π, . . . , π; π, . . . , π] ⊂ [Λ1] = [π, . . . , π; 1, π, . . . , π] ⊂ [Λ2] = [π, . . . , π; 1, 1, π . . . , π] ⊂
· · · ⊂ [Λn] = [π, . . . , π; 1, 1, . . . , 1].

To see how the rest of the apartment is laid out, one must understand the action on
the lattices of the reflections which generate the Weyl group associated to the Bruhat-Tits
building for Spn(K). The affine Weyl group is of type C̃n which has Coxeter diagram:

•1 •2 •3 •n−1 •n •n+1

with (n + 1) “vertices”, and the two endpoints being “special” vertices in the sense of [4].
The Coxeter diagram for Cn is the same with the last special vertex (and associated “edge”)
deleted. Associated to each “vertex” i in the Coxeter diagram is a reflection si, and the
collection of reflections satisfy the standard rules s2

i = 1 and sisj has order mij, indicated
by the Coxeter diagram (m12 = mn(n+1) = 4, mi(i+1) = 3, i 6= 1, n, and mij = 2 otherwise).
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Acting on the symplectic basis {u1, . . . , un, w1, . . . , wn}, define the reflections (any basis
vector not specified is fixed):

• s1: Interchange u1 and w1

• sj (2 ≤ j ≤ n): Interchange uj−1 ↔ uj and wj−1 ↔ wj

• sn+1: un 7→ π−1wn, wn 7→ πun

That is, acting on a vertex [πa1 , . . . , πan ; πb1, . . . , πbn ],

• s1 takes [πa1 , . . . , πan; πb1 , . . . , πbn] to [πb1 , πa2 , . . . , πan; πa1 , πb2 . . . , πbn ]

• sj (2 ≤ j ≤ n): takes [πa1 , . . . , πan; πb1 , . . . , πbn] to
[πa1 , . . . , πaj , πaj−1 , . . . , πan; πb1 , . . . , πbj , πbj−1 , . . . , πbn]

• sn+1: takes [πa1 , . . . , πan ; πb1 , . . . , πbn ] to [πa1 , . . . , πan−1 , πbn+1; πb1 , . . . , πbn−1 , πan−1]

The group C̃n is generated by s1, . . . , sn+1 subject only to the relations given by the Coxeter
data above.

Now we proceed to label the apartment Σ. Each chamber in the building contains two
special vertices. In the case of a fundamental chamber, one of them is the vertex fixed
by the reflections s1, . . . , sn, and the other is fixed by s2, . . . , sn+1. Label the special ver-
tex fixed by s1, . . . , sn as v0 = [π, . . . , π; π, . . . , π]. From above, we see that the vertex
[πa1 , . . . , πan ; πb1, . . . , πbn ] is fixed by sj (2 ≤ j ≤ n) iff aj−1 = aj and bj−1 = bj. The
vertex is fixed by sn+1 iff an = bn + 1. Thus ai = bi + 1 for all i, and so the vertex
v1 = [πa1 , . . . , πan ; πb1, . . . , πbn] = [π, . . . , π; 1, . . . , 1] is another special vertex in a funda-
mental chamber. Now fix a fundamental chamber containing these two vertices. Then the
codimension-one faces of this fundamental chamber may be labeled by the reflections si so as
to generate the rest of the apartment. In labeling the apartment, it is useful to first establish
the “residue” of the vertex v0 (that is the set of chambers in Σ containing it). This is simply

obtained by letting the spherical Weyl group Cn = 〈s1, . . . , sn〉 ( C̃n act on the fundamental
chamber.

Example 2.3. We illustrate this in the case of n = 2. Since Spn is of type Cn, the Weyl
group is isomorphic to (Z/2Z)n o Sn (the signed permutation group) and has order 2nn!, so
for n = 2 we expect 8 chambers in the apartment containing the given vertex v0 = [Λ0], with
Λ0 = π(Ou1 ⊕Ou2 ⊕Ow1 ⊕Ow2). Thus we start with a fundamental chamber given by the
flag Λ0 = (π, π, π.π) ⊂ (1, π, π, π) ⊂ (1, 1, π, π) ⊂ (1, 1, 1, 1) = π−1Λ0, and act on this flag
with the group C2 = 〈s1, s2〉 = {1, s1, s2, s2s1, s1s2, s1s2s1, s2s1s2, s2s1s2s1 = s1s2s1s2}.

The pairs of vertices defining the chambers containing v0 are:

[1, π, π, π] ⊂ [1, 1, π, π], [π, π, 1, π] ⊂ [π, 1, 1, π], [π, 1, π, π] ⊂ [1, 1, π, π],

[π, π, π, 1] ⊂ [1, π, π, 1], [π, 1, π, π] ⊂ [π, 1, 1, π], [π, π, π, 1] ⊂ [π, π, 1, 1],

[1, π, π, π] ⊂ [1, π, π, 1], [π, π, 1, π] ⊂ [π, π, 1, 1].
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Given the residue of a vertex, we continue the labelling of the apartment by use of the
full affine group C̃n.

Example 2.4. For Sp2(K) we have the following (partial) labeling of an apartment by classes
of lattices:

[π2, 1; 1, π2]

M
M

M
M

M
M

[π2, 1; 1; π] [π2, π; 1, π]

q
q

q
q

q

M
M

M
M

M
[π2, π; 1, 1] [π2, π2; 1, 1]

q
q

q
q

q
q

N
N

N
N

N
N

•

• [π, 1; 1, π]

q
q

q
q

q
q

M
M

M
M

M
M

[π, π; 1, π] [π, π; 1, 1]

q
q

q
q

q
q

M
M

M
M

M
M

[π, π2; 1, 1] [π2, π3; π, 1]

p
p

p
p

p
p

[π, 1; π, π2]

M
M

M
M

M
M

[π, 1; π, π] [π, π; π, π]

q
q

q
q

q
q

M
M

M
M

M
M

[π, π; π, 1] [π, π2; π, 1]

q
q

q
q

q
q

N
N

N
N

N
N

[π2, π3; π2, 1]

• [1, 1; π, π]

q
q

q
q

q
q

M
M

M
M

M
[1, π; π, π] [1, π; π, 1]

M
M

M
M

M
M

q
q

q
q

q
[1, π2; π, 1] [π, π3; π2, 1]

p
p

p
p

p
p

• [1, 1; π2, π] [1, π; π2, π] [1, π; π2, 1] [1, π2; π2, 1] •

At this point we give a lattice-theoretic characterization of the special vertices. From
the general theory of buildings we know that Spn(K) acts transitively on the chambers
of the building, so in particular maps our fundamental chamber to any other chamber,
and does so in a “type preserving” manner. In particular, special vertices are mapped to
special vertices. Also note that in the fundamental apartment, the special vertex v0 =
[π, . . . , π; π, . . . , π] is mapped to the other special vertex v1 = [π, . . . , π; 1, . . . , 1] by means
of the matrix diag(1, . . . , 1, π−1, . . . , π−1) ∈ GSpS

n(K). Thus it is clear that every special
vertex in the building is the image of v0 under the action of GSpS

n(K). The converse is also
true; to see this, we give an alternate characterization of special vertices as those which are
“self-dual”.

Let Λ = Oπa1u1 ⊕ · · ·⊕Oπanun ⊕Oπb1w1 ⊕ · · ·⊕Oπbnwn. The dual lattice Λ] is defined
to be {v ∈ V | 〈v, Λ〉 ⊆ O}. It too is a lattice, and it it easily seen from the bilinearity of
the alternating form that Λ] = Oπ−b1u1 ⊕ · · · ⊕Oπ−bnun ⊕Oπ−a1w1 ⊕ · · · ⊕Oπ−anwn. It is
also clear that (πνΛ)] = π−νΛ], so [Λ]] depends only on [Λ], and in particular [Λ] = [Λ]] iff
πµΛ] = Λ for some µ ∈ Z.

Proposition 2.5. Let Λ = Oπa1u1⊕· · ·⊕Oπanun⊕Oπb1w1⊕· · ·⊕Oπbnwn. Then [Λ] = [Λ]]
iff there exists an integer µ, so that for all i, ai + bi = µ. In this case we call the vertex
self-dual.

Proof. Using our explicit characterization of the dual lattice, [Λ] = [Λ]] iff there exists an
integer µ so that πµΛ] = Λ, that is (by comparing coefficients of the ui and wi) iff πµπ−bi = πai

and πµπ−ai = πbi which is iff µ = ai + bi for all i.

Proposition 2.6. If Λ = Oπa1u1 ⊕ · · · ⊕Oπanun ⊕Oπb1w1 ⊕ · · · ⊕Oπbnwn, and the vertex
[Λ] is self-dual, then it image under the affine Weyl group C̃n is again a self-dual vertex.
Moreover, the image of any non-self dual vertex is again not self-dual.
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Proof. We need only check this for the generators si of the affine Weyl group, and all of
these assertions are obvious from the definitions above.

Remark 2.7. From the above it now follows that GSpS
n(K) acts transitively on the special

vertices in the building. In particular, we have already observed that every special vertex can
be obtained by acting on the vertex v0 = [π, . . . , π; π . . . , π] in the fundamental apartment Σ by
an element of GSpS

n(K). We need only observe that the action of GSpS
n(K) on v0 is always a

special vertex. To see this, recall that Spn(K) acts in a type-preserving manner on vertices,
and in particular takes special vertices to special vertices. Since Γ = Spn(O) ⊂ Spn(K),
we know that any element ξ ∈ GSpS

n(K) will act in the same way as any element of ΓξΓ.
Thus by Lemma 3.1 (see below), we may assume that ξ = diag(πa1 , . . . , πan, πb1 , . . . , πbn)
with ai + bi constant. Finally, it is clear that the action of this ξ on v0 produces a self-dual
vertex in Σ, which by Proposition 2.6 must be special.

For our application to walks on the building, it is convenient here to make one fur-
ther characterization of the special vertices in an apartment. As above, we work in a
fixed apartment with symplectic basis {ui, wi}. From the discussion above, we saw that
a vertex v0 = [πa1 , . . . , πan; πb1 , . . . , πbn] represented by the lattice Let Λ = Oπa1u1 ⊕ · · · ⊕
Oπanun ⊕ Oπb1w1 ⊕ · · · ⊕ Oπbnwn is special (self-dual) if and only if ai + bi = µ is con-
stant. Moreover, the lattice Λ is completely characterized by the data (µ, a1, . . . , an) ∈ Zn+1.
For two special vertices v0 and v′

0 = [πa′

1 , . . . , πa′

n ; πb′1, . . . , πb′n], we have that v0 = v′
0 iff

a′
i = ai + k and b′i = bi + k for some k ∈ Z. Denoting v0 by [(µ, a1, . . . , an)] we see that

[(µ, a1, . . . , an)] = [(µ′, a′
1, . . . , a

′
n)] iff a′

i = ai +k and µ′ = µ+2k. Thus there is a one-to-one
correspondence between the special vertices in the apartment and the elements of the quo-
tient Zn+1/Z(2, 1, . . . , 1). We exploit this identification and the inherited group structure in
the final section of the paper where we characterize minimal walks on the building.

3 A representation of the local Hecke algebra

The goal of this section is to define an essentially faithful representation of a local Hecke
algebra acting on the special vertices of the building for Spn. The representation is quite
natural, generalizing both the notion of adjacency operators on a graph and Serre’s action of
the Hecke algebra on trees (see [5] for the case of SL2, and [2] for higher rank generalizations).
To do so, we need to discuss how the lattices which define the special vertices of the building
are connected to elementary divisors, and in turn how the elementary divisors are connected
to double cosets of the Hecke algebra.

3.1 Symplectic lattices and elementary divisors

We begin with a short discussion about lattices and elementary divisors in the symplectic
setting. Generalizing (ever so slightly) the context of the previous section, let E be a global
or local field, O its ring of integers, and (V, 〈∗, ∗〉) a 2n-dimensional symplectic space over E.
To study the symplectic divisor theory (elementary divisors with respect to the symplectic
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group), we assume that O is a PID (e.g., if E is any local field or a global field of class
number one), and let S = E×/O×. For E = Q, we let S = Q×

+, the positive rationals, while
for E = Qp, we let S = {pν | ν ∈ Z}. As before, we denote by GSpS

n(E) = {M ∈ GSpn(E) |
r(M) ∈ S}, so when E = Q, GSpS

n(E) is the classical group of similitudes GSp+
n (Q). We

again note that Spn(E) ⊂ GSpS
n(E), and put Γ = Spn(O).

Fix a symplectic basis {u1, . . . , un, w1, . . . , wn} of V satisfying 〈ui, wj〉 = δij (Kronecker
delta), 〈ui, uj〉 = 〈wi, wj〉 = 0. With obvious modification to the proof, the following is
Lemma 3.6 of [1].

Lemma 3.1. Let ξ ∈ GSpS
n(E). Then every double coset ΓξΓ has a unique representative

of the form sd(ξ) = diag(α1, . . . , αn, β1, . . . , βn) where αi, βi ∈ S and αi | αi+1, αn | βn,
βi+1 | βi, and αiβi = r(ξ)

We call a lattice symplectic if it has an O-basis which is a symplectic basis for V with
respect to the alternating bilinear form on V . The following proposition is easily established.

Proposition 3.2. Let L be a symplectic lattice. Then Γ = Spn(O) can be identified with
{A ∈ GSpS

n(E) | LA = L}, where A acts on L as the matrix of a linear transformation with
respect to a fixed basis of L.

To set up the correct analog of elementary divisor theory, we need to fuss a bit more than in
the general linear case. To begin, fix a symplectic lattice L and put R = RL = {LA | A ∈
GSpS

n(E)}. Note that in the general linear case, GSpn would be replaced by GL2n, and R
would be the set of all lattices of full rank in V , and so R would not need to be defined at
all.

Lemma 3.3. Let M and N be lattices in R. Then there exists a symplectic basis
{u1, . . . , un, w1, . . . , wn} of V , and elements αi, βi ∈ S satisfying β1O ⊂ · · · ⊂ βnO ⊂ αnO ⊂

· · · ⊂ α1O and βiαi = r ∈ S such that M =
n⊕

i=1

Oui⊕
n⊕

i=1

Owi and N =
n⊕

i=1

Oαiui⊕
n⊕

i=1

Oβiwi.

Remark 3.4. The ideals αiO and βjO are called the symplectic divisors of N in M,
and coincide with the standard elementary divisors {M : N} since Γ ⊂ SL2n(O). That
is, if we choose two lattices from R and consider their elementary divisors in the tradi-
tional sense, they are in fact symplectic elementary divisors with the additional properties
stated above. In particular, if M and N are as in the lemma, we will write {M : N} =
{α1, . . . , αn, β1, . . . , βn} to mean there exist bases of M and N as in the lemma.

Proof. Since M and N are in R, there exists an A ∈ GSpS
n(E) with N = MA. Assume that

Γ is identified with the stabilizer of M. By Lemma 3.1, sd(A) = diag(α1, . . . , αn, β1, . . . , βn) =
γ1Aγ2 for some γi ∈ Γ, where sd(A) is the “symplectic divisor” matrix of A. Finally, it is
clear that since Mγi = M, that {M : N} = {Mγ1 : Mγ1A} = {Mγ1γ2 : Mγ1Aγ2} =
{M : Msd(A)} = {α1, . . . , αn, β1, . . . , βn}, from which the lemma follows.

Lemma 3.5. For A and B in GSpS
n(E), ΓA = ΓB if and only if LA = LB.
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Proof. ΓA = ΓB if and only if AB−1 ∈ Γ, which by Proposition 3.2 is true if and only if
L = LAB−1.

Lemma 3.6. Let M and N be lattices in R. The elementary divisors of M and N in L
satisfy {L : M} = {L : N} if and only if there exists an A ∈ Γ such that MA = N .

Proof. The result is clear if there exists an A ∈ Γ such that MA = N . To prove the converse,
we note that by definition of the symplectic elementary divisors, there exist elements αi,
βi ∈ S satisfying β1O ⊂ · · · ⊂ βnO ⊂ αnO ⊂ · · · ⊂ α1O and βiαi = r ∈ S and symplectic
O-bases

{u(j)
1 , . . . , u(j)

n ; w
(j)
1 , . . . , w(j)

n } (j = 1, 2)

of L such that

L =
n⊕

i=1

Ou
(1)
i ⊕

n⊕
i=1

Ow
(1)
i M =

n⊕
i=1

Oαiu
(1)
i ⊕

n⊕
i=1

Oβiw
(1)
i

L =
n⊕

i=1

Ou
(2)
i ⊕

n⊕
i=1

Ow
(2)
i N =

n⊕
i=1

Oαiu
(2)
i ⊕

n⊕
i=1

Oβiw
(2)
i

Let A be the matrix of the linear transformation (with respect to either basis) taking u
(1)
i 7→

u
(2)
i , and w

(1)
i 7→ w

(2)
i . Clearly A ∈ Spn(E) ⊂ GSpS

n(E) as it maps one symplectic basis to
another. Since LA = L, A ∈ Γ by Proposition 3.2 above. Since A obviously maps M to N ,
the proof is complete.

Proposition 3.7. Let L ∈ R, Γ the stabilizer of L as above, A ∈ GSpS
n(E), and

ΓAΓ = Γsd(A)Γ = Γ diag(α1, . . . , αn, β1, . . . , βn)Γ.

Then Γξ 7→ Lξ gives a one-to-one correspondence between the cosets Γξ in ΓAΓ and lattices
M ∈ R with {L : M} = {α1, . . . , αn, β1, . . . βn}.

Proof. We may assume that A = diag(α1, . . . , αn, β1, . . . , βn). If Γξ = ΓAδ with δ ∈ Γ,
then Lξ ∈ R and we have {L : Lξ} = {L : LAδ} = {L : LA} = {α1, . . . , αn, β1, . . . βn}.
Conversely, if M ∈ R and {L : M} = {α1, . . . , αn, β1, . . . βn}, then by Lemma 3.6 there
exists an element B ∈ Γ such that M = LAB. Clearly ΓAB ⊂ ΓAΓ. The correspondence is
one-to-one since by Lemma 3.5, Γξ = Γζ if and only if Lξ = Lζ.

3.2 The representation

We now give a natural representation of the local Hecke algebra in which the Hecke operators
act on the (special) vertices of the building for Spn(K). In addition, we shall show how the
operators in this representation space correspond to “adjacency operators” on the underlying
1-complex of the building. In the next section, we use these operators to characterize minimal
walks on the building.

It is well-known (see [1]) that the “local” Hecke algebras characterize the global Hecke
algebra, but since we don’t require any of the global theory for this application, we shall



THE ARITHMETIC AND COMBINATORICS OF BUILDINGS FOR SPN 9

simply define the local Hecke algebra, Hp. For concreteness, we work over the local field K =
Qp, and continue the notation of the earlier sections with O = Zp, π = p, S = {pν | ν ∈ Z},
and Γ = Spn(Zp). To be precise, the algebra we define, Hp, is isomorphic to the localization
of the global Hecke algebra, but in particular, it is not the entire Hecke ring associated to
the Hecke pair Spn(Zp) and GSpn(Qp). Rather it is the subalgebra (over Q) generated by
double cosets ΓξΓ with ξ ∈ GSpS

n(Qp). By Lemma 3.1, we may assume all ξ have the form
ξ = diag(pa1 , . . . , pan , pb1 , . . . , pbn), where a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1. To introduce the
algebra structure on Hp, we give its multiplication law (e.g., see section 3.1 of [6]):

Let ξ1 = diag(pa1 , . . . , pan , pb1, . . . , pbn), ξ2 = diag(pc1 , . . . , pcn, pd1 , . . . , pdn) be elements of
GSpS

n(Qp) and write Γξ1Γ as the disjoint union ∪Γαi, and write Γξ2Γ as the disjoint union
∪Γβj.

(Γξ1Γ)(Γξ2Γ) = Γξ1Γξ2Γ =
∑

ΓξΓ

c(ξ)ΓξΓ

where the sum is over all double cosets ΓξΓ ⊂ Γξ1Γξ2Γ, and where c(ξ) is the number of
pairs (i, j) for which Γαiβj = Γξ.

We remark that they key to establishing the isomorphism between the localization of the
global Hecke algebra and the local algebra Hp we have just defined is the following lemma.

Lemma 3.8. Let Λ = Spn(Z) and ξ ∈ GSp+
n (Q) ∩ GL2n(Z[p−1]). If ΛξΛ is the disjoint

union ∪Λξi, then ΓξΓ is the disjoint union ∪Γξi.

Proof. Without loss of generality, we may assume ξ ∈ M2n(Z) since the general case follows
by multiplying by a power of p. First, it is clear that ∪Γξi ⊆ ΓξΓ, and that the ξi have
integer entries. Next, we see that the cosets Γξi are disjoint since if not then ξiξ

−1
j ∈

Γ ∩ GL2n(Z[p−1]) ⊆ Λ. To show that the union is all of ΓξΓ, we need only show that
ξΓ ⊆ ΓξΛ, for then any element γ̃1ξγ̃2 = γ̃3ξγ (γ̃i ∈ Γ, γ ∈ Λ), so ξγ ∈ Λξi for some i, hence
γ̃1ξγ̃2 ∈ Γξi. To see ξΓ ⊆ ΓξΛ is really just a density argument: Let q = r(ξ) be the similitude
factor associated to ξ. Recall (see [1]) that there is a natural surjective homomorphism
Spn(R) → Spn(R/qR) with R = Z or Zp. Denote by Γ(q) the kernel of the homomorphism
Spn(Zp) → Spn(Zp/qZp). From Chapter 2, §3.3 of [1], we have that Γ(q) ⊂ Γ∩ξ−1Γξ. Using
the fact that Spn(Zp/qZp) ∼= Spn(Z/qZ) (and that Spn(Z) → Spn(Z/qZ) is surjective), we
may write Γ = ∪Γ(q)δi with the δi ∈ Λ. Let γ̃ ∈ Γ, and write γ̃ = γ̃0δk for some γ̃0 ∈ Γ(q)
and some k. Then

ξγ̃ = ξγ̃0δk = ξγ̃0δk(δ
−1
k ξ−1)ξδk = (ξγ̃0ξ

−1)ξδk ∈ ΓξΛ

since ξγ̃0ξ
−1 ∈ ξΓ(q)ξ−1 ⊂ ξ(Γ ∩ ξ−1Γξ)ξ−1 ⊂ Γ.

Finally, we are ready to define our representation of the local Hecke algebra Hp acting
on the Bruhat-Tits building, ∆n, for Spn(Qp). We have previously noted that the vertices of
the building, Vert(∆n), are in one-to-one correspondence with homothety classes of lattices
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in our fixed Qp-vector space V , however our action will only be on the special vertices. So we
let B be the rational vector space with basis consisting of the special vertices in Vert(∆n).

Let L be a lattice in V with [L] a special vertex in ∆n, and identify Γ = Spn(Zp)
with the stabilizer of L in GSpS

n(Qp). Let ξ = diag(pa1 , . . . , pan; pb1 , . . . , pbn) ∈ GSpS
n(Qp).

By Proposition 3.7, we know that the double coset ΓξΓ determines a collection of right
cosets {Γξν} which are in one-to-one correspondence with the collection of lattices {M}
with {L : M} = {pa1 , . . . , pan ; pb1, . . . , pbn}. Note that all of these lattices M are contained
in R = {LA | A ∈ GSpS

n(Qp)}, and hence by the discussion above, their classes are all
special vertices.

In the context of Hecke operators acting on modular forms, the natural action of a
double coset on the modular form is to sum the actions on the form by the right cosets
comprising the double coset. Using the notation above, it is then natural to define the
operator TB(pa1 , . . . , pan ; pb1, . . . , pbn) ∈ End(B) induced by:

TB(pa1 , . . . , pan; pb1 , . . . , pbn)([L]) =
∑

{L:M}={pa1 ,...,pan ;pb1 ,...,pbn}

[M ]

where the sum is over all (special) vertices in the building with prescribed elementary divisors.
For brevity, we shall write TB(ξ)([L]) =

∑
{L:M}=ξ[M ]. The map is clearly well-defined and

(by definition) linear.

Theorem 3.9. The correspondence ΓξΓ 7→ TB(ξ) induces a representation Ψ : Hp →
End(B), whose kernel consists of double cosets of the form ΓξΓ with ξ = pµI2n, µ ∈ Z.

Proof. We first verify that Ψ is a ring homomorphism. Using the notation above, we have

TB(ξ1)TB(ξ2)([L]) = TB(ξ1)(
∑

{L:M}=ξ2

[M ])

=
∑

{L:M}=ξ2

∑

{M :N}=ξ1

[N ]

By Proposition 3.7, each lattice M for which {L : M} = ξ2 is of the form M = Lβj. Now

{M : N} = ξ1 ⇐⇒ {Lβj : N} = ξ1 ⇐⇒ {L : Nβ−1
j } = ξ1

Now let P be such that {L : P} = ξ1. Then again by Proposition 3.7, P = Lαi for some
i. But then P = Nβ−1

j , so N = Pβj = Lαiβj.

Thus, TB(ξ1)TB(ξ2)([L]) =
∑

{L:M}=ξ2

∑

{M :N}=ξ1

[N ] =
∑

i,j

[Lαiβj]. From the discus-

sion preceding the theorem (and once again Proposition 3.7), this last sum is exactly∑
ΓξΓ c(ξ)TB(ξ)([L]) which is the image of (Γξ1Γ)(Γξ2Γ).
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To compute the kernel of Ψ, suppose
∑

ΓξΓ c(ξ)TB(ξ) is the trivial map. Then

∑

ΓξΓ

c(ξ)TB(ξ)([L]) =
∑

ΓξΓ

c(ξ)
∑

{L:M}=ξ

[M ] = [L]

for all special vertices [L] ∈ Vert(∆n). But the special vertices [M ] ∈ Vert(∆n) are a basis
for B, we have all the only one ξ, and for that ξ, c(ξ) = 1. Thus we have

∑
{L:M}=ξ[M ] = [L]

for all [L]. Now if ΓξΓ = ∪Γξν, then by Proposition 3.7,
∑

{L:M}=ξ[M ] =
∑

ν[Lξν ] = [L], so

there can be only one right coset: ΓξΓ = Γξ, and [Lξ] = [L]. Since {L : Lξ} = ξ, we must
have ξ = pµI2n for some integer µ.

We have suggested that this operator is natural by means of its analogy with summing
right cosets of a double coset, but in fact it also intrinsic in terms of the underlying structure
of the building ∆n, where the operators can, at least at the level of apartments in the
building, be identified with adjacency operators. Since this is just motivation, we content
ourselves to looking at the generators for the local Hecke algebra for Sp2 for which we have
provided pictures of the apartment.

Example 3.10. For Sp2, there are three generators of the algebra Hp, T (p) = Γ diag(1, 1, p, p)Γ,
T 2

1 (p2) = Γ diag(1, p, p2, p)Γ and T 2
2 (p2) = Γ diag(p, p, p, p)Γ whose images under the

representation are respectively TB(1, 1, p, p), TB(1, p, p2, p), and TB(p, p, p, p). The last
operator acts trivially, but the first two are of real interest. At least restricted to the
fundamental apartment (see Example 2.4), we see that TB(1, 1, p, p) sums the four spe-
cial vertices closest to [p, p; p, p], namely [1, 1; p, p] + [1, p; p, 1] + [p, p; 1, 1] + [p, 1; 1, p]
while TB(1, p, p2, p) sums the four special vertices “next closest” to [p, p; p, p], namely
[1, p2; p, p] + [p, p2; p, 1] + [p2, p; 1, p] + [p, 1; p, p2]. Thus both operators act very much like
adjacency operators on the underlying 1-complex.

Finally, it is interesting to note what happens when we consider the sum of certain non-
special vertices, for example consider the sum T = [p, p; p, 1]+[p, p; 1, p]+[p, 1; p, p]+[1, p; p, p],
consisting of the four non-special vertices closest to [p, p, p, p]. We observe that if we take
[L] + [M ] = [L + M ], then [p, p; p, 1] + [p, p; 1, p] = [p, p, 1, 1] and [p, 1; p, p] + [1, p; p, p] =
[1, 1; p, p], while [p, p; p, 1] + [p, 1; p, p] = [p, 1; p, 1] and [p, p; 1, p] + [1, p; p, p] = [1, p; 1, p], so
that 2T = TB(1, 1; p, p). Thus there appears to be no loss of generality by restricting adjacency
operators to special vertices.

4 Hecke Operators and Walks

In this last section, we characterize minimal walks in the building of a prescribed length in
terms of the action of the Hecke operators defined in the previous section.

Fix an apartment in the building by specifying a symplectic basis {u1, w1, . . . , un, wn}. We
showed previously that the special vertices in the apartment are in one-to-one correspondence
with the elements of Zn+1/Z(2, 1, . . . , 1).



12 Thomas R. Shemanske

Example 4.1. For Sp2(K) we have the following (partial) labeling of the special vertices in
an apartment by elements of Z3/Z(2, 1, 1). Note that in considering the 1-subcomplex of the
apartment, we have removed all non-special vertices and the corresponding edges. Compare
with Example 2.4.

[(2, 2, 0)]

K
K

K
K

K
[(0, 1, 0)]

s
s

s
s

s

K
K

K
K

K
[(0, 1, 1)]

s
s

s
s

s

L
L

L
L

L

[(1, 1, 0)]

s
s

s
s

s

K
K

K
K

K
[(1, 1, 1)]

s
s

s
s

s

K
K

K
K

K
[(1, 1, 2)]

r
r

r
r

r

[(2, 1, 0)]

K
K

K
K

K
[(0, 0, 0)]

s
s

s
s

s

K
K

K
K

K

K
K

K
K

K
[(0, 0, 1)]

s
s

s
s

s

L
L

L
L

L

[(1, 0, 0)]

s
s

s
s

s

K
K

K
K

K
[(1, 0, 1)]

K
K

K
K

K

s
s

s
s

s
[(1, 0, 2))]

r
r

r
r

r

[(2, 0, 0)] [(2, 0, 1)] [(2, 0, 2)]

The natural group operation defined on Zn+1/Z(2, 1, . . . , 1) induces one the special ver-
tices of an apartment. Moreover there is a natural geometric interpretation of this group
operation as well. Consider the special vertices in the residue of a fundamental chamber
containing [(0, . . . , 0)]. Recalling that the spherical Weyl group, Cn, is isomorphic to the
signed permutation group (Z/2Z)n o Sn, it is easy to see that the collection of special ver-
tices in this residue (excluding [(0, . . . , 0)] itself) consists of all vertices of the form [(1, ε)]
where ε ∈ {0, 1}n. In Example 4.1 the special vertices are labeled counterclockwise [(1, 1, 1)],
[(1, 1, 0)], [(1, 0, 0)], and [(1, 0, 1)], and they define “directions” in which to move (relative
to [(0, . . . , 0]) within the apartment which is consistent with the group law: For example,
from [(0, 0, 0)] moving 2 units in the direction indicated by [(1, 1, 1)] and then one unit in
the direction indicated by [(1, 0, 1)] brings us to [(3, 2, 3)] = [(1, 1, 2)]. Thus we can think of
a vertex [(µ, a1, . . . , an)] as the endpoint of a walk along the 1-subcomplex of the apartment
(consisting of only the special vertices and associated edges) which is given by moving a
certain number of units in the directions mentioned above. Our goal is to characterize the
endpoints of minimal walks on this graph.

Now the geometric action of our Hecke operator TB becomes a bit clearer. Recall

TB(pa1 , . . . , pan; pb1 , . . . , pbn)([L]) =
∑

{L:M}={pa1 ,...,pan ;pb1 ,...,pbn}

[M ]

Restricted to our given apartment, this sum is fairly easy to characterize. All lattices
M in the apartment have the form [pc1 , . . . , pcn; pd1 , . . . , pdn]. For simplicity, normalize L =
[p0, . . . , p0]. Then {L : M} = {pa1 , . . . , pan ; pb1, . . . , pbn} means that each ci and di are chosen
from among the ai and bi. But the choices are more constrained. For each i, ci is either some
aσ(i) or some bσ(i) for σ ∈ Sn. But then di is determined by the choice of ci since ci + di is
constant. In particular (assuming the normalization of L as above), the set of lattices M with
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the prescribed elementary divisors are those obtained by acting on [pa1 , . . . , pan ; pb1 , . . . , pbn ]
by all the elements of the spherical Weyl group Cn.

The interpretation of TB(pa1 , . . . , pan ; pb1, . . . , pbn) on the building ∆n is a bit more com-
plicated. By a minimal walk between two vertices, we simply mean a walk (a sequence of
vertices {v1, . . . , vm} each pair {vi, vi+1} connected by an edge), between the two vertices
which is of minimal length. Again we reiterate that we are considering only the 1-subcomplex
of the building spanned by the special vertices. We characterize the endpoints of minimal
walks in the building in the following theorem.

Theorem 4.2. Let v0 = [L] be a special vertex in the Bruhat-Tits building ∆n for Spn(K)
which is represented by the homothety class of the lattice L. The set of special vertices in the
building which are endpoints of minimal walks of length m from v0 is

∑

0≤a2≤···≤an≤m/2

TB(1, pa2, . . . , pan ; pm, pm−a2 , . . . , pm−an)([L]).

Proof. Consider a minimal walk, γ, between two vertices v0 and vm in ∆n. Denote the walk
by the sequence of vertices through which it passes: γ = {v0, v1, · · · , vm}. Choose chambers
C0 and Cm with v0 ∈ C0 and vm ∈ Cm, and let A be an apartment containing the chambers
C0 and Cm. Finally, let ρ = ρA,C0 be the canonical retraction of ∆n onto A centered at C0.

Since the retraction ρ is a simplicial map, it takes the walk γ to another walk ρ(γ) =
{ρ(v0), ρ(v1), . . . , ρ(vm−1), ρ(vm)} contained in A. But v0 and vm are both in A, so are fixed
pointwise by ρ, making ρ(γ) a walk in A from v0 to vm. Moreover, it is clear that ρ(γ) has
length at most m, since it has at most m + 1 distinct vertices defining the walk. Finally,
since m is the length of any minimal walk from v0 to vm, we must have that ρ(γ) has length
m, and hence is a minimal walk in A from v0 to vm.

Since our interest is only to count the endpoints of minimal walks of length m, we may
assume from the argument above that any such walk is wholly contained in an apartment.
Thus we need only characterize the vertices of an apartment which are the endpoints of
minimal walks (in that apartment) of length m. Let v = [a1, . . . , an; b1, . . . , bn] (ai+bi = µ) be
such a vertex. The Weyl group acting on the apartment will take any walk in the apartment
to another of the same length. Since we will use the Weyl group to count endpoints of
minimal walks in the apartment there is no loss of generality to assume that v is chosen with
0 ≤ a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1. Moreover, since the vertex is defined by the homothety
class of a lattice, we may assume that a1 = 0. Recall that there is a one-to-one correspondence
between the vertices of an apartment and elements in Zn+1/Z(2, 1, 1, . . . , 1). Our normalized
v has the form v = [(µ, 0, a2, . . . , an)], where 0 ≤ a2 ≤ · · · ≤ an ≤ µ. In fact all the
ai ≤ µ/2 since ai ≤ an ≤ bn and an + bn = µ. We claim that µ = m. Define the elements of
Zn+1: ε0 = (1, 0, . . . , 0), ε1 = (1, 0, . . . , 0, 1), . . . , εn−1 = (1, 0, 1, . . . , 1). First note that the
directions [ε0], [ε1], . . . , [εn−1] are independent in the sense that

∑n−1
k=0 ckεk ∈ Z(2, 1, . . . , 1)

iff
∑n−1

k=0 ckεk = 0 iff ck = 0 for all k. Now we return to our vertex v = [(µ, 0, a2, . . . , an)] as
above. If µ = 1 then 0 ≤ a2 ≤ · · · ≤ an ≤ 1/2, so v = [(1, 0, . . . , 0)] is one of the special
vertices in the residue of (0, . . . , 0)], and hence the endpoint of a walk of length one.
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Next consider the case µ > 1. Then

v = [(µ, 0, a2, . . . , an)] = a2[εn−1] + (a3 − a2)[εn−2] + · · · + (an − an−1)[ε1] + (µ − an)[ε0].

Each summand has the form c[εi] and so represents a walk of length c in the direction [εi].
By the independence of the [εi], we conclude the above walk is minimal (and of length µ) ,
hence µ = m.

For a vertex v, denote by vCn the orbit of v under the action of the spherical Weyl
group. Then in a given apartment, the endpoints of minimal walks of length m starting
from [0, 0, . . . , 0] is given by

∑

0≤a2≤···≤an≤m/2

[(m, 0, a2, . . . , an)]Cn .

From this, the theorem follows immediately.
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