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Abstract. Serre introduced the notion of a Hecke operator acting on the vertices
of a tree (the Bruhat-Tits building for SL2(Qp) ). In this paper we give a natu-
ral characterization of an algebra of Hecke operators acting on the vertices of the
Bruhat-Tits building for SLn(Qp). This algebra of operators arises as a represen-
tation of an abstract Hecke algebra which, from work of Andrianov, is known to be
isomorphic to the ring of symmetric polynomials in n variables. We show that this
ring of symmetric polynomials acts in a completely natural way on the apartments
of the building. Moreover, the abstract Hecke ring gives rise to n families of Hecke
operators whose generating series produce “Euler factors” for various exterior pow-
ers. As a byproduct of our work, we give a natural characterization of Andrianov’s
spherical map by which he established this isomorphism between the abstract Hecke
ring and the ring of symmetric polynomials.

1. Introduction

We are interested in characterizing an algebra of Hecke operators which act on the
free abelian group generated by the vertices in the Bruhat-Tits building for SLn(Qp).
This algebra of operators not only acts naturally in terms of the geometry of the
building, but also is a representation space for the (p-part of the) standard Hecke
algebra given in terms of double cosets. As a consequence, we obtain a geometri-
cally motivated characterization of Andrianov’s spherical map through which it is
shown that the p-part of the Hecke algebra is isomorphic to the ring of symmetric
polynomials Q[x1, . . . , xn]

sym. Everything we do here will work just as well over any
nonarchimedean local field, but for simplicity we restrict to Qp.

We begin with some notation concerning buildings and a summary of Serre’s
description of the Hecke operators when the building is a tree. Let V be an n-
dimensional vector space over Qp, and ∆n be the Bruhat-Tits building for SLn(Qp)
(see [3] or [4]). The vertices of ∆n are in one-to-one correspondence with homothety
classes of lattices (free Zp-modules) in V of rank n. By the elementary divisor theo-
rem, given two lattices L and M, there exists a basis {e1, . . . , en} of V and rational
integers a1, . . . , an, so that

L = Zpe1 ⊕ · · · ⊕ Zpen, M = Zpp
a1e1 ⊕ · · · ⊕ Zpp

anen.
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Given this notation, Serre [6], in the case of n = 2, defines the distance between
the two vertices represented by the lattices L and M as |a1−a2|. Generalizations for
n > 2 appear in [5]. Using this distance function, Serre defines a graph by placing
an edge between any two vertices which are unit distance apart. It then follows that
the resulting graph (which is the Bruhat-Tits building for SL2(Qp)) is a (p + 1)-
regular tree, and that vertices which are distance m from a given vertex are simply
the endpoints of walks without backtracking of length m.

Serre defines a family of Z-linear operators θ` which act on the free abelian group
generated by the vertices of the tree by setting

θ`(v) =
∑

d(v,w)=`

w,

that is, a vertex is mapped to the sum of its neighbors at distance `. From the
structure of the tree, he notes that

θ1θ1 = θ2 + (p+ 1)θ0 and θ1θ` = θ`+1 + pθ`−1 for ` ≥ 2.

Compared to the recursions satisfied by classical Hecke operators T (p`) (or merely
in terms of simplicity of expression) the recursion is slightly off in the base case. To
correct this, Serre defines

T0 = θ0, T1 = θ1, and T` = θ` + T`−2 for ` ≥ 2,

which yields (for all ` ≥ 1) the relation

T1T` = T`+1 + pT`−1.

While a generating series for the θ` operators is not quite as simple, the T` operators
satisfy

∑

`≥0

T`u
` =

[
1− T1u+ pu2

]−1
.

For obvious reasons, the operators T` are called Hecke operators. We observe that,
while the Hecke operators satisfy a cleaner recursion than the θ`s, their definition
is in some ways less satisfying, since the θ`s appear to be a more natural family of
operators with respect to the structure of the tree.

In our generalizations to SLn(Qp) for n > 2, we provide motivation for why the
operators T` are in fact quite natural.

2. Higher Rank Hecke Operators on ∆n

With Serre’s characterization of the Hecke operators on SL2(Qp) so readily in hand,
we give the generalization to the case of SLn(Qp). While the definition given here is,
in and of itself, a natural generalization of Serre’s, we do not show until later how the
corresponding algebra of these operators arises as the image of a representation of
the abstract Hecke algebra given by double cosets. In later sections we also indicate
a number of interesting “Euler” factors which arise by considering various generating
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series involving Hecke operators. On the other hand, we do take this opportunity to
give an action of symmetric polynomials on the vertices of the building which will
motivate the characterization of the isomorphism of the local Hecke algebra and the
ring of symmetric polynomials established by Andrianov using the spherical map.

We begin with a little notation. As in the previous section, let V be an n-
dimensional vector space over Qp, and let ∆n be the Bruhat-Tits building for SLn(Qp).
The vertices of ∆n are in one-to-one correspondence with homothety classes of lattices
in V of rank n, and we let B0 denote the free abelian group generated by the vertices
of ∆n and B = Q⊗ B0 the corresponding vector space over Q.

For positive integers m and n, denote by Pn(m) the set of partitions of m into n
pieces such that a given partition satisfies: m ≥ i1 ≥ · · · ≥ in ≥ 0 (and

∑
ik = m).

Endow Pn(m) with the lexicographic ordering. Fix a lattice L in V whose homothety
class [L] is a vertex in ∆n, and let Γp = GLn(Zp).

With the lattice L fixed as above, we recall [7] that there is a 1 – 1 correspondence
between right cosets Γpξν in Γp diag(pa1 , . . . , pan)Γp and lattices M in V = L ⊗ Qp

with elementary divisors {L : M} = {pa1 , . . . , pan}.
Thus, analogous to the action of a double coset on functions, it is natural to define

the Hecke operator TB(pa1 , . . . , pan) (acting on B0 (or B)) by

TB(pa1 , . . . , pan)([L]) =
∑

{L:M}={pa1 ,... ,pan}

[M].

Also with i = (i1, . . . , in) ∈ Pn(`), we define

TB(p`) =
∑

i∈Pn(`)

TB(pi1 , . . . , pin).

To foreshadow a bit, it is important to note that since the ring structure of the
local Hecke algebra is characterized [7] precisely in terms of elementary divisors of
lattices on V , we will have for free that the generating series for the operators TB(p`)
is expressible as the same rational function as the generating series for the classical
Hecke operators T (p`) (see Theorem 3.21 of [7]), namely

∑

`≥0

TB(p`)u` =

[
n∑

k=0

(−1)kpk(k−1)/2 t̃nk(p)u
k

]−1

,

with the t̃nk(p) “elementary symmetric polynomials” defined in a subsequent section.
There is a corresponding definition of the Hecke operator on an apartment (in terms

of classes of lattices):

TA(pa1 , . . . , pan)([L]) =
∑∗

{L:M}={pa1 ,... ,pan}

[M]

where the sum is over all lattices relative to the (unordered) basis {e1, . . . , en} of L.
As we shall see, it is actually the Hecke operator restricted to the apartment which is
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the most natural from the point of view of symmetric polynomials, and represented
our starting point in this investigation.

The operators defined above which act on the building are perfectly natural. More-
over, we show as an example, that in the case n = 2, the operators defined above are
precisely the operators T` defined by Serre. The notation is as in the introduction.

Example 2.1. For n = 2, we have TB(p`) =
∑[`/2]

k=0 TB(pk, p`−k).
Recall that Serre defined two operators

θ`([L]) =
∑

d([L],[M])=`

[M], ` ≥ 1; θ0 = 1

T`([L]) = θ` + T`−2, ` ≥ 2; T0 = θ0, T1 = θ1

By Serre’s definition of distance,

d([L], [M]) = ` iff {L : M} = {pa, pb} with ` = |a− b|

Since [M] = [pkM] we have that

θ`([L]) =
∑

{L:M}={1,p`}

[M]

Claim: T` = TB(p`) for all ` ≥ 0. We proceed by induction on `. For ` = 0

this is trivial. For ` = 1, we observe that T1([L]) = θ1([L]) =
∑

{L:M}={1,p}[M] =

TB(1, p)([L]) = TB(p)([L]).
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Now assume that ` ≥ 2.

T`([L]) = θ`([L]) + T`−2([L])

=
∑

{L:M}={1,p`}

[M] + TB(p`−2)([L]) by induction

= TB(1, p`)([L]) +

[(`−2)/2]∑

k=0

TB(pk, p`−2−k)([L])

= TB(1, p`)([L]) +

[(`−2)/2]∑

k=0

TB(p, p)TB(pk, p`−2−k)([L])

= TB(1, p`)([L]) +

[(`−2)/2]∑

k=0

TB(pk+1, p`−1−k)([L])

= TB(1, p`)([L]) +

[`/2]∑

k=1

TB(pk, p`−k)([L])

=

[`/2]∑

k=0

TB(pk, p`−k)([L]) = TB(p`)([L]).

Now we introduce a labeling of the apartments in a building which will make natural
an action of symmetric polynomials on the apartment, and hence provide the insight
for connecting the local Hecke algebra with the ring of symmetric polynomials.

To specify an apartment in ∆n, choose an unordered set of n one-dimensional
subspaces V1, V2, . . . , Vn, such that V = V1 ⊕ V2 ⊕ · · · ⊕ Vn. The vertices in the
apartment can be viewed as homothety classes of lattices L = Zpv1⊕ · · ·⊕Zpvn with
vi ∈ Vi for each i. We denote by A0 the free abelian group generated by the vertices
in this apartment, and A the corresponding vector space over Q.

Now fix an ordering of the chosen subspaces Vi, which we will refer to as an ori-
entation of the apartment. This orientation will allow us define first a labeling of
the vertices in the apartment by monomials, and then a polynomial action on A.
To begin, fix a vertex v in the apartment, and let v correspond to the class of the
lattice L0 = Zpe1 ⊕ · · · ⊕ Zpen. Then the vertices of the apartment are in one-to-
one correspondence with the classes of lattices Zpp

a1e1 ⊕ · · · ⊕ Zpp
anen, where the

ai run over Z. Focusing attention on the ordered n-tuple (a1, a2, . . . , an), the ver-
tices of the apartment are thus in one-to-one correspondence with the elements of
Zn/Z · (1, 1, . . . , 1).

Following [3], if u = (u1, . . . , un) and v = (v1, . . . , vn) are in Zn, write

u � v if ui ≤ vi ≤ ui + 1 for all i.
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Calling two elements of Zn/Z · (1, 1, . . . , 1) incident if they admit representatives u
and v with u � v then produces a flag complex which defines the full simplicial
structure of the apartment. It is clear that for every coset in Zn/Z · (1, 1, . . . , 1),
there is a unique representative (a1, . . . , an) in which all entries are nonnegative and
at least one is zero. Using this representative, we label the corresponding vertex with
the monomial xa11 x

a2
2 . . . xann . As indicated by the structure of a flag complex, this

labelling is far from arbitrary.
Consider our fixed vertex v represented by the lattice L0 = Zpe1 ⊕ · · · ⊕ Zpen,

and hence by the monomial 1. Any chamber (i.e., (n − 1)-simplex) containing v
corresponds to a maximal flag of lattices:

pL0 = Ln ( Ln−1 ( · · · ( L1 ( L0.

Fix such a (fundamental) chamber, by choosing

Li = Zppe1 ⊕ · · · ⊕ Zppei ⊕ Zpei+1 ⊕ · · · ⊕ Zpen.

This chamber then has vertices labeled 1, x1, x1x2, . . . , x1x2 · · ·xn−1.
To illustrate the labeling, consider an apartment for SL2:

. . . •
y3

•
y2

•
y

•
1

•
x

•
x2

•
x3

. . .

We fix a vertex and label it 1, and then label a fundamental chamber (determining
vertex x). Using the incidence relation defined above, it is clear that x is incident to
1, x2 to x, x3 to x2, and so on. This labels the right hand side of the apartment. It
is also clear that y is incident to 1, y2 to y, and so on, which uniquely determines the
left hand side.

Next consider a piece of a labeled apartment for SL3:
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As before, we fix a vertex and label it 1. Choosing a fundamental chamber fixes
vertices labeled x and xy. It is clear that x and y are the only two vertices incident
to both 1 and xy, hence the vertex labeled y is determined. z is also incident to 1,
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but not to y or x, which determines its placement. Loosely speaking, we see that
there are three “principal directions” indicated by a motion from 1 to x, y or z. We
label the vertices as follows: starting from 1 and moving in the x-direction, we label
the vertices x, x2, x3, . . . . Similarly for movements in the y and z directions. The
incidence relation says that the vertex xy is labeled as such because to get there from
1 we move one unit in the x direction and by one unit in the y direction.

For an apartment for SLn, we choose an orientation and a vertex to be labeled 1,
and thus a fundamental chamber in the manner described above. This has fixed the
labelling of 1, x1, x1x2, . . . , x1x2 · · ·xn−1. From here the rest of the labelling can be
deduced from incidence relations. For consider the residue of the vertex 1, that is
the collection of chambers which contain the vertex 1. It is well known that this is
a spherical building of type An containing n! chambers. Within the residue consider
the n − 1 chambers sharing a common codimension 1 face with the given chamber.
Each such face is determined by n − 1 vertices, and hence the nth vertex defining
such a chamber is uniquely determined, and hence so is the class of the lattice which
represents that vertex. Using the incidence relation, we may continue in this way to
label the entire apartment.

Now we note that there is a natural action of monomials on the vertices of the
apartment. For nonnegative integers ai and indeterminates xi, we say that a vertex
w is a xa11 x

a2
2 · · ·xann -translate of v if there exists lattices L1 ∈ v and L2 ∈ w with

L2 ⊂ L1 and {L1 : L2} = {pa1 , pa2 . . . , pan}, where the latter notation represents
the elementary divisors of L2 relative to L1. Note that since vertices are defined by
classes of lattices, any vertex v is an x1 · · ·xn - translate of itself, i.e. the x1x2 · · ·xn
- translate of v = [L] is [pL] = v. It is also obvious that the composition of translates
corresponding to n-tuples of nonnegative integers (a1, a2 . . . , an) and (b1, b2 . . . , bn)
is equal to the translate corresponding to (a1 + b1, a2 + b2, . . . , an + bn), and that
translates exist and are unique. However, if w is an xa11 x

a2
2 · · ·xann -translate of v, the

n-tuple (a1, a2, . . . , an) is determined only up to multiples of (1, 1, . . . , 1).
Using the monomial labeling of the apartment, if w is an xa11 x

a2
2 · · ·xann -translate

of v, then to go from v to w along the edges of the apartment, proceed ai units in
each of the xi directions starting from v. Alternately the xa11 x

a2
2 · · ·xann -translate of

the vertex labeled xb11 x
b2
2 · · ·x

bn
n is labeled by the product of these two monomials,

modulo the relation x1x2 · · ·xn = 1.
This notion of translation extends to an action of the polynomial ring Q[x1, x2, . . . , xn]

on A. Notice that this is independent of our choice of which vertex is labeled 1, since
a change in that choice merely multiplies all labels by a fixed monomial. However,
the action does depend on our choice of an orientation. We can however pass to a ring
of orientation-independent operators by restricting to a smaller class of polynomials.

Since an orientation is defined by an ordering of the subspaces V1, V2, . . . , Vn, pos-
sible orientations correspond to elements of Sn. One readily sees that changing orien-
tations affects our monomial labeling by σ ∈ Sn acting on the variables x1, x2, . . . , xn.
Thus orientation-independent operators are simply symmetric polynomials, so the
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connection to Andrianov’s work is becoming visible. To proceed, we need to work
through some of the formalism of the local Hecke algebras.

3. Abstract Hecke Algebras

One goal of our work is to show that the p-part of the global Hecke algebra is
naturally isomorphic to a ring of symmetric polynomials, and that the algebra of
Hecke operators which act on the vertices of the Bruhat-Tits building is simply a
representation of this standard Hecke algebra.

To begin, we review the forms of the Hecke theory given by Shimura [7] and by
Andrianov and Zhuravlev [2], and then relate these to that of the Hecke algebra
defined over a local field. Since these connections are mostly straightforward, detail
will be minimized.

3.1. Global Hecke Algebras. The Hecke algebra described by Shimura [7] is given
in terms of double cosets with respect to the discrete group SLn(Z), while the algebra
described by Andrianov and Zhuravlev [2] is given in terms of formal sums of right
cosets which are invariant under right action by the discrete group GLn(Z).

Let Γ be a subgroup of a group G and S ⊃ Γ, a semigroup contained in the
commensurator of Γ in G. For ξ ∈ S, let

ΓξΓ = ∪Γξν

be the decomposition of the double coset into disjoint right cosets. Andrianov denotes
by (ξ) the formal sum

∑
Γξν. In Shimura’s definition the Hecke algebra H = H(Γ, S)

is the free Z-module generated by such ΓξΓ, while for Andrianov and Zhuravlev the
generators are the (ξ). Since multiplication in the respective Hecke rings is defined in
exactly the same way, obviously the map ΓξΓ 7→ (ξ) induces an isomorphism between
the respective rings. We will therefore feel free to use either of the notations ΓξΓ or
(ξ) as is most convenient in what follows.

In [7] Shimura studies a Hecke ring H with respect to Γ = SLn(Z), and S =
M+

n (Z) (n × n integral matrices with positive determinant), while Andrianov fo-
cuses on Γ = GLn(Z) and S = GLn(Q). However, the map H(SLn(Z),M+

n (Z)) →
H(GLn(Z), GLn(Q)) defined by (ξ) 7→ (ξ) factors as

H(SLn(Z),M+
n (Z)) → H(SLn(Z), GL+

n (Q)) → H(GLn(Z), GLn(Q)),

where the map on the left is an injection, and that on the right an isomorphism.
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Draft Remark 1. The left hand map being an injection is clear.
For the right, we use Proposition III.1.9 of [2].

Lemma 3.1. The rational Hecke algebra R(SLn(Z), GL+
n (Q)) is isomor-

phic to R(GLn(Z), GLn(Q)).

Proof. In the notation of [2], let Γ0 = SLn(Z), Γ = GLn(Z), S0 = GL+
n (Q)

and S = GLn(Q). We note that the conditions in equation (1.26) are
satisfied:

1. Γ0 ⊂ Γ
2. S ⊂ ΓS0

3. Γ ∩ (S0 · S
−1
0 ) ⊂ Γ0

the last since the elements of (S0 · S
−1
0 ) have positive determinant.

Given a right coset Γs (s ∈ S), we have that Γs = Γs0 for some s0 ∈ S0 by
(2). It follows (see [2] that the map ΓsΓ 7→ Γ0s0Γ0 is a monomorphism of
rings. Since S0 ⊂ S, this map will be an isomorphism if we show that the
degree of Γs0Γ is the same as the degree of Γ0s0Γ0 for all s0 ∈ S0. That
is, we must show that

[Γ : Γ ∩ s−1
0 Γs0] = [Γ0 : Γ0 ∩ s

−1
0 Γ0s0]

for all s0 ∈ S0.
Consider the map

Γ0 ↪→ Γ → (Γ ∩ s−1
0 Γs0)\Γ given by A 7→

(
Γ ∩ s−1

0 Γs0

)
A

If A is in the kernel of this homomorphism, then A ∈ Γ0 ∩ s−1
0 Γs0, so

A = s0γs
−1
0 for some γ ∈ Γ. But then det(γ) = det(A) = 1, hence γ ∈ Γ0

which yields that A ∈ Γ0∩ s
−1
0 Γ0s0. It follows immediately that the kernel

is equal to Γ0 ∩ s
−1
0 Γ0s0, so we have an injection of (Γ0 ∩ s

−1
0 Γ0s0)\Γ0 into

(Γ ∩ s−1
0 Γs0)\Γ.

To show surjectivity, let B ∈ Γ. We must show that there exists an A ∈ Γ0

so that (Γ∩s−1
0 Γs0)B = (Γ∩s−1

0 Γs0)A. We are concerned with the degrees
of the double cosets Γs0Γ and Γ0s0Γ0, so without loss we may assume
that s0 is diagonal. Thus s0 diag(−1, 1, . . . , 1)s−1

0 = diag(−1, 1, . . . , 1),
from which we deduce that diag(−1, 1, . . . , 1) ∈ (Γ ∩ s−1

0 Γs0) and hence
if B 6∈ Γ0, we may take A = diag(−1, 1, . . . , 1)B. This completes the
proof.

A refinement of this leads to

Proposition 3.2. H(GLn(Z), GLn(Q)) is generated, as a ring, by H(SLn(Z),M+
n (Z))

together with the elements (p−1In) for all primes p. (In denotes the n × n identity
matrix.)

Draft Remark 2. something similar is lemma 2.15 of [2].
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Setting

Hn = H(GLn(Z), GLn(Q))

Hn = H(SLn(Z),M+
n (Z)),

we therefore view Hn as the integral subring of Hn.

While we have defined Hecke algebras H = H(Γ, S) only as Z-modules, obviously
we can choose coefficients from any ring. In particular, the associated rational algebra
is HQ = Q⊗H. In an abuse of notation we may simply denote this H as well, with
the context making clear that scalars are in Q.

Draft Remark 3. ******** we need to watch to see if we ever do this
**********

3.2. Local Hecke Algebras. Henceforth, we shall be concerned with the p-part of
the Hecke algebra Hn. In the notation of [2], this is defined by

Hn
p = H(GLn(Z), GLn(Z[p−1])) ⊂ Hn.

The subrings Hn
p for all primes p generate Hn.

The integral subring Hn
p of Hn

p is

Hn
p = 〈(ξ) | ξ ∈Mn(Z), det(ξ) = ±pλ〉

= 〈(diag(pi1, . . . , pin)) | 0 ≤ i1 ≤ · · · ≤ in〉

where the angle brackets enclose generators as a Z-module. As a ring, Hn
p is generated

by Hn
p together with the single element (p−1In).

Thus the study of the the global Hecke ring Hn reduces to study of the local
Hecke rings Hn

p , which in turn can be understood through their integral subrings Hn
p .

However, the remainder of this paper will focus on the p-adic Hecke ring

Hn
p = H(GLn(Zp), GLn(Qp)),

and its integral subring

Hn
p = 〈(diag(pi1 , . . . , pin)) | 0 ≤ i1 ≤ · · · ≤ in〉,

which together with the single element (p−1In) generates Hn
p . This is sufficient for

studying the above algebras, though, since Hn
p (resp. Hn

p) is isomorphic to Hn
p (resp.

Hn
p).

To see this isomorphism, let Γ = GLn(Z), Γp = GLn(Zp), S = GLn(Z[p−1]), and
Sp = GLn(Qp). Then

Hn
p = H(Γ, S) = 〈Γ diag(pi1, pi2 , . . . , pin)Γ | i1 ≤ i2 ≤ · · · ≤ in〉,

while
Hn
p = H(Γp, Sp) = 〈Γp diag(pi1 , . . . , pin)Γp | i1 ≤ i2 ≤ · · · ≤ in〉.
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Now consider the obvious map Hn
p → Hn

p induced by taking ΓξΓ 7→ ΓpξΓp for

ξ = diag(pi1 , . . . , pin). It is immediate that this is a vector space isomorphism, so
we need only show it preserves multiplication. Since multiplication in the Hecke
algebras is defined in terms of multiplication of right coset representatives, it suffices
to establish the following:

Lemma 3.3. If α ∈ GLn(Z[p−1]) and ΓαΓ = ∪Γαi (disjoint union), then

ΓpαΓp = ∪Γpαi (disjoint union).(3.1)

Proof. We may assume α has entries in Z, since the general case then follows by
multiplication of α by pk for some k ∈ Z. Note that for such an α each coset
representative αi has coefficients in Z and has determinant ±pλ. Suppose that Γpαi∩
Γpαj is non-empty. Then αiα

−1
j ∈ Γp, has entries in Z[1/p]∩Zp, and has determinant

±1, thus αiα
−1
j ∈ Γ. Thus Γαi = Γαj, and so αi = αj. Therefore the union in (3.1)

is disjoint.
To establish the equality in (3.1), note first that Γpαi ⊆ ΓpαΓp is clear. Thus

we need only show that if β ∈ ΓpαΓp, then β ∈ Γpαi for some i. Without loss of
generality, we may assume α is diagonal, since it may be brought into that form by
multiplication on the left and right by elements of Γ.

Let β = γ1αγ2 with γ1, γ2 ∈ Γp. We may assume det(γ2) = 1, since if otherwise,
we can set ε = diag(det(γ2), 1, 1, . . . , 1) ∈ Γp and write

γ1αγ2 = γ1αεε
−1γ2 = (γ1ε)α(ε−1γ2),

where we’ve used the fact that diagonal matrices commute. The expressions in paren-
theses then can be taken as the new γ1 and γ2.

Choose a positive integer m such that pmα−1 ∈ Mn(pZ). By a density argument,
pick γ3 ∈ Γ, δ ∈Mn(Zp), with γ2 = γ3 + pmδ. Then

β = γ1αγ2 = γ1α(γ3 + pmδ) = γ1(In + pmαδγ−1
3 α−1)αγ3.

By the choice of m, the last expression in parentheses is in Γp. Thus β ∈ Γpαγ3.
Since Γαγ3 = Γαi for some i, this means β ∈ Γpαi .
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Draft Remark 4. Here we give the required density argument. Let Γ±1
p

denote the subgroup of Γp consisting of matrices with determinant ±1.
We show that Γ is dense in Γ±1

p .

Let γ1 ∈ Γ±1
p . Then using elementary row and column operations, we can

express γ1 as a product of permutation matrices, matrices E which look
like the identity but with one off-diagonal entry in Zp, and a diagonal
matrix with determinant ±1.
For any positive integer m we need to find a matrix γ2 ∈ Γ with γ1 ≡ γ2

mod pm. To do this, it is sufficient to do so for each matrix mentioned
above in the product expressing γ1. Permutation matrices are already in
Γ, and handling the E matrices is easy. The diagonal matrix is a little
more involved.
If D = diag(d1, d2, . . . dn) where di ∈ Z×p , we first find a 2 × 2 matrix

in GL2(Z) congruent to

(
d1 0
0 d−1

1

)
mod pm. We do this by picking

a ∈ Z, a ≡ d1 mod pm, and then picking c, d ∈ Z so that ad− p2mc = 1.

Then

(
a pm

pmc d

)
∈ GL2(Z). Let D1 be the n × n matrix with this

2 × 2 block in the upper left and 1’s on the diagonal. Then, D−1
1 D ≡

diag(1, d−1
1 d2, d3, . . . dn) mod pm. Continuing ‘in this way’, we ultimately

get D ≡ D1D2 . . .Dn mod pn where Di ∈ Γ.

3.3. Generating Series. For motivational purposes we recall a generating series for
certain elements of the local Hecke ring. As in the previous section, let Hn

p denote
the p-part of the Hecke algebra Hn.

Let dnk(p) be the diagonal matrix diag(1, . . . , 1︸ ︷︷ ︸
n−k

, p, . . . , p︸ ︷︷ ︸
k

) and denote by T nk (p) the

double coset Γdnk(p)Γ in Hn
p . In the notation of [2] this is πnk (p) = (dnk(p)).

Let

T (p`) =
∑

α∈Γ\Mn(Z)/Γ
detα=±p`

ΓαΓ ∈ Hn
p

The following is Theorem 3.21 of [7] and Proposition III.2.22 of [2]:

Theorem 3.4. The formal Hecke series
∑

`≥0 T (p`)u` is a rational function giventhm:globalhecke

by:

∑

`≥0

T (p`)u` =

[
n∑

k=0

(−1)kp
k(k−1)

2 T nk (p)uk

]−1

.

Further light is shed on this identity by exploring connections of the local Hecke
algebra to an algebra of symmetric polynomials. Andrianov and Zhuravlev [2] give a
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map ω between the Hecke rings Hn
p , Hn

p and certain rings of symmetric polynomials in
n variables. Known as the spherical map, ω is first defined on right cosets and, after
extension by linearity, is then restricted to the Hecke algebra. While its definition is
more complicated than we wish to we state here, we do want to describe the action
of the spherical map on certain Hecke operators as a means of motivating why one
would study Hecke operators through symmetric polynomial rings.

Let sk = sk(x1, x2, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1xi2 · · ·xik be the kth elementary sym-

metric polynomial. Then under the spherical map ω, we have (Lemma 2.21 of [2]
(Chapter 3)) that

ω(πnk (p)) = p
−k(k+1)

2 sk(x1, . . . , xn).

so that at least formally (and again identifying πnk (p) with T nk (p))

∑

`≥0

ω(T (p`))u` =

[
n∑

k=0

(−1)kp
k(k−1)

2 ω(πnk (p))u
k

]−1

=

[
n∑

k=0

(−1)kp−ksk(x1, . . . , xn)u
k

]−1

=

n∏

i=1

(
1− p−1xiu

)−1
.

(3.2)

This shows how the structure of the “Euler factor” of this generating series of Hecke
operators is most easily expressed through the spherical map. Using the spherical
map, Andrianov also shows that the p-part of the Hecke algebra, Hn

p , is isomorphic
to the full ring of symmetric polynomials in n variables. With such an intimate
connection between Hecke operators and symmetric polynomials we are led to a more
comprehensive study.

4. Symmetric polynomials

Based upon the nice action of the spherical map on the elements πnk (p), one might be
inclined to investigate the image of double cosets under the spherical map as a means
of characterizing “natural” Hecke operators in the ring of symmetric polynomials. In
fact the image of most double cosets is not particularly attractive, so we take another
approach.

First, we define a family of symmetric polynomials, denoted tnk(p
`) and which we

will call Hecke operators, whose associated generating series are rational functions
— in particular kth exterior powers. We shall see that one subcollection of these
operators, the tn1 (p`), are essentially formal analogs of the classical Hecke operators
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T (p`). In particular, the generating series for both collections of operators give rise
to essentially the same rational functions.

This section deals only with symmetric polynomials without explicit connections
to the Hecke algebra. However, later in the paper we shall see that these polynomials
(actually via a representation of the associated algebra) act naturally on the Bruhat-
Tits building for SLn, and reduce to the operators which Serre introduced on trees
in the case n = 2.

The symmetric group Sn acts naturally on polynomials in n variables. Thus for
a polynomial P it makes sense to refer to the stabilizer Stab(P ) in Sn of P . For
a polynomial P in n variables, define the symmetrized polynomial associated to P ,
Symn(P ), by

Symn(P ) =
∑

σ∈Sn/ Stab(P )

σ(P )

We understand that if P is a constant, that Symn(P ) = P .

For our later convenience, we observe the following.

Lemma 4.1. Let M be a monomial, and F = Symn(M). If M ′ is another monomial
occurring in F , then F = Symn(M

′).

Draft Remark 5. Proof. Let H = Stab(M) in Sn. Then F =∑
σ∈Sn/H

σ(M). If M ′ i s another monomial in F , then M ′ = τM for

some τ ∈ Sn. Since Stab(M ′) = τ Stab(M)τ−1, by definition, we have

Symn(M
′) =

∑

ϕ∈Sn/τHτ−1

ϕ(M ′) =
∑

ϕ∈Sn/τHτ−1

ϕτ(M)

We need only establish that as ϕ runs through a set of coset representatives
of Sn/τHτ

−1, ϕτ runs through a set of coset representatives for Sn/H. We
have that ϕτH = ϕ′τH if and only if τ−1ϕ−1ϕ′τ ∈ H from which we see
the correspondence is 1 − 1. As there are the same number of cosets in
both cases, we are done.

Let m and n be positive integers and denote by Pn(m) the set of partitions of
m into n pieces such that a given partition satisfies: m ≥ i1 ≥ · · · ≥ in ≥ 0 (and∑
ik = m).
Introduce the lexicographic ordering on Pn(m), and let i = (i1, i2, . . . , in) ∈ Pn(m).

For indeterminates z1, z2, . . . , zn define
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hp(0, . . . , 0) = 1,

hp(i) = hp(i1, i2, . . . , in) =
∑

j≤i
j∈Pn(m)

Symn(z
j1
1 z

j2
2 · · · z

jn
n ), and

hn(`) = hp(`, 0, . . . , 0︸ ︷︷ ︸
n

) =
∑

j∈Pn(`)

Symn(z
j1
1 z

j2
2 · · · z

jn
n ) =

∑
∑
jk=`
jk≥0

zj11 z
j2
2 · · · z

jn
n

Note that the hp(i) form a basis for the Q-algebra of symmetric polynomials. How-
ever, the polynomials hn(`) appear in a generating series with a particularly simple
rational expression.

Proposition 4.2. The generating series associated to the hr(`) satisfies prop:basiceuler

∑

`≥0

hr(`)u` = [(1− uz1) · · · (1− uzr)]
−1

Proof. This is essentially obvious:

[(1− uz1) · · · (1− uzr)]
−1 =

(
∑

a1≥0

(uz1)
a1

)
· · ·

(
∑

ar≥0

(uzr)
ar

)

=
∑

`≥0

u` ·
[ ∑
∑
ai=`
ai≥0

za11 · · · zarr
]

It is clear from the definitions above that the coefficient of u` in the given expression
is hr(`).

Let x1, x2, . . . , xn be indeterminates. We now define our family of Hecke operators
as symmetric polynomials in Q[x1, x2, . . . , xn]: For 1 ≤ k ≤ n, define

tnk(p
`) = h(

n
k)(`)

∣∣∣ zi 7→σi(x1x2···xk)
σi∈Sn/ Stab(x1x2···xk)

We observe that the index [Sn : Stab(x1x2 · · ·xk)] is the size of the orbit of x1x2 · · ·xk
under the group action, that is, the number of distinct monomials in k different
variables which one can form with n variables. This is clearly

(
n
k

)
, the binomial

coefficient. Thus there is one element σi ∈ Sn/ Stab(x1x2 · · ·xk) to correspond to
each of the variables z1, . . . , z(nk)

.

The above definition is sufficiently complex to warrant an example, however we
note before giving detail that tnk(p) is nothing more than the kth elementary symmetric
polynomial in the variables x1, x2, . . . , xn.
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Example 4.3. We begin by computing

hr(1) = hp(1, 0, . . . , 0︸ ︷︷ ︸
r

) = Symr(z1) = z1 + z2 + · · ·+ zr.

Then for example,

tn1 (p) = hn(1)
∣∣∣ zi 7→σi(x1)
σi∈Sn/ Stab(x1)

= x1 + x2 + · · ·+ xn = s1(x1, x2, . . . , xn),

the first elementary symmetric polynomial, and in general

tnk(p) = h(
n
k)(1)

∣∣∣ zi 7→σi(x1x2···xk)
σi∈Sn/ Stab(x1x2···xk)

=
∑

1≤i1<···<ik≤n

xi1 · · ·xik = sk(x1, x2, . . . , xn),

the kth elementary symmetric polynomial.

Remark 4.4. Notice that the polynomials tnk(p
`) are symmetric polynomials in the

variables x1, x2, . . . , xn. As such,

tnk(p
`) ∈ Q[x1, . . . , xn]

sym = Q[s1, s2, . . . , sn].

Since tnk(p) = sk, we have that the algebra generated by these operators is actually
equal to the full ring of symmetric polynomials:

〈tnk(p
`) | ` ≥ 0, k = 1, 2, . . . , n〉 = 〈tnk(p) | k = 1, 2, . . . , n〉 = Q[s1, s2, . . . , sn]

Turning to generating series, we find

Proposition 4.5. For k = 1, 2, . . . , n, the generating series for the Hecke operatorsprop:generaleuler

tnk(p
`) is a rational function:

∑

`≥0

tnk(p
`)u` =

[ ∏

σ∈Sn/ Stab(x1x2···xk)

(1− uσ(x1x2 · · ·xk))
]−1

Remark 4.6. The Euler factors which appear here also appeared in work of Andrianov
[1]. He defined a zeta function which encapsulated the algebra structure of the full
local Hecke algebra and whose rational expression had denominator equal to the
product of all of the denominators above, i.e.,

n∏

k=1

∏

σ∈Sn/ Stab(x1x2···xk)

(1− uσ(x1x2 · · ·xk)).

However, the numerator of that rational expression was non-trivial and not explicitly
given. In this paper, we are producing a family of operators whose generating series
are rational functions whose denominators are the individual factors of this product,
with numerators 1.
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Proof. From Proposition 4.2, we know that

∑

`≥0

h(
n
k)(`)u` =

[ (nk)∏

i=1

(1− uzi)
]−1

.

But

tnk(p
`) = h(

n
k)(`)

∣∣∣ zi 7→σi(x1x2···xk)
σi∈Sn/ Stab(x1x2···xk)

which completes the proof.

Example 4.7. Consider the case of n = 4. We have the four Hecke series:

∑

`≥0

t41(p
`)u` = [(1− ux1)(1− ux2)(1− ux3)(1− ux4)]

−1

∑

`≥0

t42(p
`)u` = [(1− ux1x2)(1− ux1x3)(1− ux1x4)(1− ux2x3)(1− ux2x4)(1− ux3x4)]

−1

∑

`≥0

t43(p
`)u` = [(1− ux1x2x3)(1− ux1x2x4)(1− ux1x3x4)(1− ux2x3x4)]

−1

∑

`≥0

t44(p
`)u` = [(1− ux1x2x3x4)]

−1

Remark 4.8. Later in this paper we establish a connection between these tnk and
classical Hecke operators. Accepting such a connection for now, note that the Euler
factor corresponding to tnk has degree

(
n
k

)
and the monomials are the kth exterior

powers of the xis. Then, observing that the Euler factor corresponding to
∑
tn1 (p`)u`

seems most basic to GLn and that the Euler factor corresponding to
∑
tnk(p

`)u` has
degree

(
n
k

)
suggests a correspondence between forms on GLn and forms on GL(nk)

.

We now illustrate parallels between the polynomial Hecke operators, tn1 (p`), and
those defined through double cosets, T (p`). We first note the following

Lemma 4.9. Let sj = sj(x1, x2, . . . , xn). Then

(1− ux1) · · · (1− uxn) = 1− s1u+ s2u
2 + · · ·+ (−1)nsnu

n.
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Draft Remark 6. Proof.

(1− ux1) · · · (1− uxn) = (−1)n(x1 · · ·xn)(u− x−1
1 ) · · · (u− x−1

n )

= (−1)n(x1 · · ·xn)[u
n − s1(x

−1
1 , . . . , x−1

n )un−1 + s2(x
−1
1 , . . . , x−1

n )un−2

+ · · ·+ (−1)nsn(x
−1
1 , . . . , x−1

n )u0]

= (x1 · · ·xn)[sn(x
−1
1 , . . . , x−1

n )− usn−1(x
−1
1 , . . . , x−1

n ) + · · ·+ (−1)nun]

Finally, observe that since
(
n
j

)
=

(
n
n−j

)
is the number of mono-

mials in sj(x
−1
1 , . . . , x−1

n ), we have that (x1 · · ·xn)sj(x
−1
1 , . . . , x−1

n ) =
sn−j(x1, . . . , xn) for j ≥ 1 which completes the proof.

From Proposition 4.2 and the lemma above, we have that

∑

`≥0

tn1 (p`)u` =
[ n∏

i=1

(1− uxi)
]−1

=

[
n∑

k=0

(−1)ksk(x1, . . . , xn)u
k

]−1

,

which is similar to (3.2) above. In fact, if we apply the algebra automorphism of
Q[s1, . . . , sn] induced by taking sk(x1, x2, . . . , xn) to p−ksk(x1, x2, . . . , xn), the re-
sulting “Euler” factor would coincide with the earlier one.

Proposition 4.10. The only extensions to Q[x1, x2, . . . xn] of the automorphism ofprop:sympolys

Q[s1, s2 . . . , sn] which maps sj 7→ p−jsj are those which map xj 7→ p−1xσ(j) for some
σ in the symmetric group Sn.

Remark 4.11. 1. The proposition says that the automorphism of Q[s1, s2, . . . , sn]
can be thought of as the restriction (to the subalgebra of symmetric polynomials)
of the automorphism induced by xi 7→ p−1xσ(i) for any σ ∈ Sn.

2. We could have hidden this automorphism by defining our Hecke operator tnk(p
`)

as

tnk(p
`) = h(

n
k)(`)

∣∣∣ zi 7→p−kσi(x1x2···xk)
σi∈Sn/ Stab(x1x2···xk)

,

but the introduction of the power of p into the expression zi 7→ p−kσi(x1x2 · · ·xk)
would have hardly been motivated at that point. Moreover, as we shall see
in the next section, we want to define a representation of this algebra on an
apartment associated to SLn(Qp) and then on the building. Since the structure
of the apartments are independent of p, the dependence upon p in the operators
should appear only at the level of the building.
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Proof. (of proposition) Let ϕ : Q[x1, x2, . . . , xn] → Q[x1, . . . , xn] be a Q-algebra
isomorphism such that ϕ(sj(x1, . . . , xn)) = p−jsj(x1, x2, . . . , xn). We want to show
that ϕ(xj) = p−1xσ(j) for some permutation σ in Sn. Let ξj = ϕ(xj). Then

sj(ξ1, . . . , ξn) = ϕ(sj(x1, x2, . . . , xn)) = p−jsj(x1, x2, . . . , xn) = sj(
x1

p
, . . . ,

xn
p

).

Since the polynomials

n∏

k=1

(u− ξk) =

n∑

k=0

(−1)ksk(ξ1, . . . , ξn)u
n−k

=

n∑

k=0

(−1)ksk(
x1

p
, . . . ,

xn
p

)un−k =

n∏

k=1

(u−
xk
p

)

have the same roots, the proof is complete.

5. Action on Buildings and Apartments

There are at least two reasons we defined the Hecke operators in the ring of poly-
nomials. The first is that we produce a natural way of characterizing Andrianov’s
spherical map — which is instrumental in showing that the local Hecke algebra is iso-
morphic to the ring of symmetric polynomials. The second is that there is a natural
action of this polynomial Hecke algebra on the apartments of the Bruhat-Tits build-
ing for SLn over a local field. It was actually the latter reason which was provided
the initial impetus for this investigation. In the first section we give an alternate
characterization of the spherical map.

5.1. A natural characterization of the spherical map. As in the previous sec-
tion, x1, x2, . . . , xn are indeterminates and sk = sk(x1, x2, . . . , xn) is the kth ele-
mentary symmetric polynomial in the xi. We let ω : Hn

p → Q[s1, . . . , sn] denote
Andrianov’s spherical map([2]).

We have previously established a canonical isomorphism between the (integral sub-
rings of the) p-part of the global Hecke algebra Hn

p and the local Hecke algebra (Hn
p).

Recalling that Γp = GLn(Zp) and dnk(p) is the diagonal matrix diag(1, . . . , 1︸ ︷︷ ︸
n−k

, p, . . . , p︸ ︷︷ ︸
k

),

we may justifiably denote by T nk (p) the double coset Γpd
n
k(p)Γp in Hn

p .
Define maps ϕA, ϕB, ψA, ψB corresponding the the commutative diagrams which

follow and which are induced by:
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ϕA : Hn
p → Q[s1, . . . , sn] : T nk (p) 7→ p−k(k−1)/2tnk(p) = p−k(k−1)/2sk

ϕB : Hn
p → Q[s1, . . . , sn] : T nk (p) 7→ tnk(p) = sk

ψA : Q[s1, . . . , sn] → Q[s1, . . . , sn] : tnk(p) 7→ p−ktnk(p) = p−ksk

ψB : Q[s1, . . . , sn] → Q[s1, . . . , sn] : tnk(p) 7→ t̂nk(p) = p−k(k+1)/2tnk(p) = p−k(k+1)/2sk

We note that ψA ◦ ϕA = ψB ◦ ϕB, and that the four maps are ring isomorphisms,
mapping well-known (algebraically independent) generators to (algebraically inde-
pendent) generators. Each composition (together with the canonical isomorphism
of Hn

p and Hn
p) gives an alternate and quite natural interpretation of the spherical

map without reference to right cosets. To reveal the significance of these maps, we
characterize their action on various Hecke operators.

We note that the diagrams which follow contain information about the action of
the Hecke algebra on the Bruhat-Tits building which will be developed fully in the
next section. For now, we make only the following remarks. Let ∆n be the Bruhat-
Tits building for SLn(Qp), and let B (resp. A) denote Q-vector space with basis the
vertices of ∆n (resp. by the vertices of a fixed apartment in ∆n). The map ρ is a
representation of the polynomial Hecke algebra in the building (apartment), defined
by the diagrams below and

ρ(tnk(p)) = t̃nk(p) =

{
tnk(p) if k < n

1 if k = n
.

Hn
p

ϕA

vvmmmmmmmmmmmmmm
ϕB

((QQQQQQQQQQQQQQOO

∼=

��

Q[s1, . . . , sn]

ρ

��
ψA

��7
77

77
77

77
77

77
77

77
77

77
77

77
77

7
Q[s1, . . . , sn]

ρ

��
ψB

����
��

��
��

��
��

��
��

��
��

��
��

��
��

Hn
p

ω

��

End(A) End(B)

Q[s1, . . . , sn]
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T nk (p)
ϕA

ttjjjjjjjjjjjjjjjjjj
ϕB

**TTTTTTTTTTTTTTTTTTTTTOO

∼=

��

p−k(k−1)/2tnk(p)

ρ

�� ψA

��?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

?
tnk(p)

ρ

��ψB

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

πnk (p)

ω

��

p−k(k−1)/2 t̃nk(p) t̃nk(p)

ω(πnk (p)) = p−k(k+1)/2tnk(p)

We want to show how the maps defined above act on our various Hecke operators:
T (p`), t(p`), tn1 (p`). The summary is contained in the commutative diagram below,
but we take our time to explore these relations.

∑

`≥0

T (p`)u` =

[
n∑

k=0

(−1)kp
k(k−1)

2 T
n
k (p)uk

]−1

ϕA

vvmmmmmmmmmmmmmmm
ϕB

))SSSSSSSSSSSSSSSSSOO

∼=

��

∑

`≥0

t
n
1 (p`)u` =

[
n∑

k=0

(−1)ksku
k

]−1

ρ

��
ψA

��7
77

77
77

77
77

77
77

77
77

77
77

77
77

77
77

77
77

77
77

77

∑

`≥0

t̂
n
1 (p`)u` =

[
n∑

k=0

(−1)kpk(k−1)/2
sku

k

]−1

ρ

��
ψB

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

∑

`≥0

t(p`)u` =

[
n∑

k=0

(−1)kp
k(k−1)

2 π
n
k (p)uk

]−1

ω

��

∑

`≥0

TA(p`)u` =

[
n∑

k=0

(−1)k t̃nk (p)uk
]−1 ∑

`≥0

TB(p`)u` =

[
n∑

k=0

(−1)kpk(k−1)/2
t̃
n
k (p)uk

]−1

∑

`≥0

ω(t(p`))u` =

[
n∑

k=0

(−1)kp−ksku
k

]−1

Consider the rational functions associated to the two Hecke series:
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∑

`≥0

T (p`)u` =

[
n∑

k=0

(−1)kp
k(k−1)

2 T nk (p)uk

]−1

and
∑

`≥0

tn1 (p`)u` =

[
n∑

k=0

(−1)ksku
k

]−1

.

By comparing the rational functions which represent the generating functions, we

see that it is quite natural to map (inducing ϕA) p
k(k−1)

2 T nk (p) to sk = tnk(p), i.e., T nk (p)

to p
−k(k−1)

2 tnk(p).
It is equally natural to simply map (inducing ϕB) T nk (p) to tnk(p). Here the new

operators t̂n1 (p`) are defined by the rational function, the image of which under the
representation ρ will be a natural Hecke operator on the Bruhat-Tits building for
SLn.

The maps ψA and ψB are simply elementary automorphisms of the symmetric
polynomial ring: ψA taking sk 7→ p−ksk (discussed in Proposition 4.10), and ψB
taking sk 7→ p−k(k+1)/2sk.

Since the spherical map ω takes πnk (p) to p−k(k+1)/2sk = p−k(k+1)/2tnk(p), we see that
the composition of the ϕs with the ψs gives the spherical map in a completely natural
way.

5.2. Buildings, Apartments and Symmetric Polynomials. In this section we
finally associate Hecke operators characterized by symmetric polynomials with oper-
ators acting on the building.

In an earlier section, we saw how to label the vertices of an apartment in the
Bruhat-Tits building for SLn(Qp) in such a way as to admit a natural action of
Q[x1, . . . , xn]

sym on the vertices. Recall that under that action, the monomials act
in the following manner: For nonnegative integers ai and indeterminates xi, we say
that a vertex w is a xa11 x

a2
2 · · ·xann -translate of v if there exists lattices L1 ∈ v and

L2 ∈ w with L2 ⊂ L1 and {L1 : L2} = {pa1 , pa2 . . . , pan}, where the latter notation
represents the elementary divisors of L2 relative to L1. Note that since vertices are
defined by classes of lattices, any vertex v is an x1 · · ·xn - translate of itself, i.e. the
x1x2 · · ·xn - translate of v = [L] is [pL] = v.

Fix a vertex in the apartment, labelled v, and let L = ⊕Zpei be a lattice whose
class determines the vertex v. Then the vertices in the apartment can be viewed in
any of the following ways: the homothety class of a lattice M, denoted [M] with
{L : M} = {pa1 , pa2 . . . , pan}; the class written explicitly in terms of the basis of L:
[Zpp

a1e1 ⊕ · · · ⊕ Zpp
anen]; the xa11 · · ·xann -translate of v.

Referring to the commutative diagrams of the preceding section, we defined a rep-
resentation of the polynomial ring (i.e the local Hecke algebra) into the Bruhat-Tits
building by

ρ(tnk(p)) = t̃nk(p) =

{
tnk(p) if k < n

1 if k = n
.
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Notice that this is just the automorphism of Q[s1, . . . , sn] which takes sk 7→ sk (if
k < n) and maps sn 7→ 1. Thus any operator (i.e. symmetric polynomial) acts on
A by translation (extended linearly) as described above. Thus we can define Hecke
operators TA(p`) acting on A by taking TA(p`) = ρ(tn1 (p`)). Then from Proposi-
tion 4.5ff, we have that

∑

`≥0

TA(p`)u` =

[
n∑

k=0

(−1)k t̃nk(p)u
k

]−1

.

Moreover, it is clear from the definition that

tn1 (p`) =
∑
∑
jk=`
jk≥0

xj11 x
j2
2 · · ·x

jn
n .

We see that the action of Symn(x
j1
1 x

j2
2 · · ·x

jn
n ) defines an operator TA(pj1, . . . , pjn)

which acts on the vertex v = [L] by

TA(pj1, . . . , pjn)([L]) =
∑∗

{L:M}={pj1 ,... ,pjn}

[M]

where the sum is over all sublattices M relative to the (unordered) basis {e1, . . . , en}
of L. Then

TA(p`) = ρ(tn1 (p`) = ρ(ϕA(T (p`))) =
∑
∑
ak=`
ak≥0

TA(pa1 , . . . , pan).

The natural definition of a Hecke operator acting on the Bruhat-Tits building is
very similar. With the lattice L fixed as above, we recall [7] that there is a 1 – 1
correspondence between right cosets Γpξν in Γp diag(pa1 , . . . , pan)Γp and lattices M
in V = L⊗Qp with elementary divisors {L : M} = {pa1 , . . . , pan}.

Thus it is natural to define the Hecke operator TB(pa1 , . . . , pan) (acting on B) as

TB(pa1 , . . . , pan)([L]) =
∑

{L:M}={pa1 ,... ,pan}

[M]

We also define

TB(p`) =
∑

i∈Pn(`)

TB(pi1, . . . , pin)

It is important to note that since the ring structure of the Hecke algebra Hn
p is

characterized [7] precisely in terms of elementary divisors of lattices on V , we have
for free that the generating series for the operators TB(p`) is expressible as the same
rational function as the generating series for the classical Hecke operators T (p`),
namely



24 JOHN A. RHODES AND THOMAS R. SHEMANSKE June 12, 1998 10:52

∑

`≥0

TB(p`)u` =

[
n∑

k=0

(−1)kpk(k−1)/2 t̃nk(p)u
k

]−1

.

That is,

TB(p`) = ρ(ϕB(T (p`))).
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