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Abstract. We study the affine building for SLn over a local field and give a char-
acterization of distance involving Hecke operators. For n = 3 we give an explicitly
computable distance formula. We use this local information to show that the class
number of a maximal order in a central simple algebra of dimension n2 over a num-
ber field K is equal to the number of orbits of a group of isometries (related to
the unit group of the maximal order) acting on a Bruhat-Tits building for SLn(K).
This generalizes results of Serre and Vignéras who considered the quaternion case
in which the Bruhat-Tits building is a tree.

1. Introduction

We begin with a summary of the quaternion case. Let F be a non-archimedean local
field with valuation ring R, A the quaternion algebra M2(F ), and V a 2-dimensional
vector space over F . If we identify A with EndF (V ), then it is well known that
every maximal order in A is of the form Λ = EndR(L) where L is a free R-module
(lattice) of rank 2. Moreover, any two maximal orders are conjugate by an element
of A×, and if M is another lattice of rank 2, then EndR(L) = EndR(M) if and only if
L = λM for some nonzero element λ of F×. Thus the maximal orders in A are in 1–1
correspondence with classes of lattices [L], where [L] = [M ] if and only if L = λM as
above.

Given two lattices L and M on V , Serre [7, p 70] defines the distance between
them using elementary divisors: If π is a uniformizing parameter for R, then by the
elementary divisor theorem there is a basis {e1, e2} of L such that {πae1, π

be2} is
a basis for M . The distance between L and M is defined to be the absolute value
|a−b|. It is trivial to observe that the distance is unchanged by replacing a lattice with
another in the same class; hence the distance function can be viewed as a function
on classes of lattices, or equivalently on the set X of maximal orders in A. We can
view the elements of X as the vertices of a graph in which two maximal orders are
connected by an edge if they are distance one apart. Serre shows that X is a tree and
that it is (q + 1)-regular, where q is the cardinality of the residue class field R/πR.
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Vignéras [9] continues the examination of the quaternion case by shifting to a
consideration of quaternion algebras over the ground field Q. Let A be a positive
definite rational quaternion algebra, Λ a maximal order in A, and let p be a prime
which splits in A, i.e., for which Ap = A⊗Q Qp

∼= M2(Qp). Serre’s tree is defined in
the local quaternion algebra Ap. Vignéras shifts the focus to the global algebra by
means of the local-global correspondence for orders: We let X be the set of maximal
orders Γ in A for which Γq = Λq for all primes q 6= p. The elements of X are in 1–1
correspondence with the maximal orders in Ap, and we may transport the distance
function for maximal orders in Ap to A by designating the distance between two global
orders Γ and Γ′ to be the distance between their localizations at p: Γp and Γ′p. As in
the case of Serre, we can make the set X into a graph by designating the maximal
orders as vertices and by placing edges between vertices which are distance one apart.
Setting Λ(p) = Λ⊗Z Z[1

p
], we see that there is a natural action of the unit group Λ(p)×

on the graph X. Under this action, Vignéras shows that the class number of Λ (and
hence of A) is equal to the number of orbits of Λ(p)× in X.

Finally, we note that the classical Hecke operators (for SL2(Z)) make an appearance
at this stage. Here we remark only that it is not a coincidence that the (p + 1)-
regularity of the graph X is equal to the degree of the Hecke operator Tp. We shall
explore this interaction carefully in our generalization of these results.

In this paper, we extend the above results to arbitrary central simple algebras (of
dimension n2) over a number field K. In general, our interest is in n ≥ 3, both because
the quaternion case generalizes formally to the number field setting, and also because
there is a fundamental difference between the structure which results on the set X
of maximal orders when n = 2 or when n ≥ 3. The structure one obtains is always
isomorphic to the Bruhat-Tits building for SLn(F ), F a non-archimedean local field.
However, in the case n = 2 (the quaternion case), the building is a tree, while in
general it is isomorphic to an (n − 1)-dimensional simplicial complex on the set X.
The fundamental difference between the quaternion and the higher rank setting is
most easily visible in the difference between the Coxeter diagrams (see [1, p 148]),
which we shall discuss in more detail later.

This paper consists of several parts. The first part establishes a correspondence
between the set of maximal orders in the central simple algebra and the vertices of
the Bruhat-Tits building for SLn(K). It will once again turn out that we may think
interchangeably of the vertices in the building as maximal orders or classes of lattices.
An important consequence is that we are able to characterize the distance between
classes of lattices (in terms of elementary divisors) in a way which is compatible with
the natural distance function on the building. For n = 3 we give an explicit distance
formula. Next we establish the regularity of the underlying graph by computing the
valence of each vertex in terms of the degree of rank n Hecke operators. For ranks
n = 3, 4, 5, we compute the valence explicitly. Finally, we show that the class number
of maximal orders is equal to the number of orbits of a certain unit group acting on
the set X of maximal orders. The proof is an adelic argument requiring an application
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of Eichler’s norm theorem which characterizes principal ideals in the algebra in terms
of their norms.

Preliminaries

Let K be a number field with ring of integers O. For a prime P (finite or infinite)
of K, let KP denote its completion with respect to the usual P-adic valuation, and
when P is finite, let OP denote the valuation ring of KP. For any Dedekind domain
R, O ⊂ R ⊂ K, let RP denote the closure of R in KP. Throughout, let π denote a
uniformizing parameter for OP.

For later convenience in applying the Eichler norm theorem (Theorem 5.2), we
want to choose a Dedekind domain R, O ⊂ R ⊂ K with the property that R is a
PID and yet with the property that for all but a finite number of primes P of K,
RP = OP. This choice also obviates the need to restrict to number fields of class
number one. In fact, it is convenient to construct a Dedekind domain containing O
which has strict class number one. Let S be a finite set of primes of K including all
the infinite ones. Put O(S) = {x ∈ K | x ∈ OP for all P /∈ S}. Note that O(S) is not
a localization of O; rather it is the intersection of all localizations O(P) for P /∈ S. In

particular, when K = Q and S consists of the infinite prime, O(S) = Z.

Lemma 1.1. There exists a finite set of primes S, which contains all the infinite
primes, and for which O(S) is a PID. Moreover, the set S can be chosen in such a
way that O(S) has strict class number one.

Proof. For any set S of the required form, O(S) is a Dedekind domain (see Chapter
II of [3]), so we need only show that O(S) has strict class number one for some set
S. Let S consist of the infinite primes together with one prime from each strict ideal
class of O. Let I be a fractional O(S)-ideal. Then I is a fractional O-ideal, and so can
be written as I = Pe1

1 Pe2

2 · · ·Per
r ·Q where the Pi ∈ S and where Q is a fractional

O-ideal relatively prime to the primes in S. It is easy to see that IO(S) = QO(S)

since PO(S) = O(S) for any P ∈ S. Finally by the assumptions on the set S, Q is in
the same strict ideal class as some prime P in S, so Q = Pα for some totally positive
α ∈ K×. Thus I = IO(S) = O(S)α, whence O(S) has strict class number one.

Remark 1.2. Observe that O
(S)
P = OP for all P /∈ S, and that for any finite set

T ⊃ S, O(T ) ⊃ O(S) and O(T ) also has strict class number one. Finally, we note that
the reader will suffer little loss of understanding in assuming throughout that K = Q

and O = O(S) = Z.

Let A be a central simple algebra of dimension n2 over K, n ≥ 3. For any Dedekind
domain R with O ⊂ R ⊂ K, we call a subset Λ ⊂ A an R-order if Λ is a subring of A
having the same multiplicative identity as A, and Λ is a finitely generated R-module
such that K ⊗R Λ ∼= A. When R is a PID, an order is a free R-module of rank n2.

Throughout we shall keep R = O(S) with S fixed and chosen as above so that all R-
orders are free R-modules. Fix a maximal R-order Λ in A, and choose a prime P /∈ S
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which is unramified in A (see §32 of [4]). Then AP
∼= Mn(KP) and by Theorem 17.3

of [4], ΛP is conjugate to Mn(OP). We may assume without loss of generality that
AP is identified with Mn(KP) in such a way that ΛP = Mn(OP). In particular, let V
be an n-dimensional vector space over KP and L a free OP-module of rank n. Then
with respect to some basis, we assume that AP = EndKP

(V ) and ΛP = EndOP
(L).

2. The Bruhat-Tits Building for SLn(KP)

In this section we characterize the Bruhat-Tits Building for SLn(KP) as an (n −
1)-dimensional simplicial complex on the set of maximal orders in AP, and give a
characterization of the distance between maximal orders (vertices in the building) in
terms of the elementary divisors of the lattices whose classes determine the orders.

To begin, recall that the affine building ∆n for SLn(KP) has type Ãn−1(KP) and
can be realized as an (n− 1)-dimensional simplicial complex on the set of classes of
lattices as follows (for complete details see [1, Chapter V.8] or [6, Chapter 9.2]): The
type of the building specifies a certain Coxeter diagram, which implicitly specifies a
collection of positive integers mij used to construct the (n− 1)-simplices. Associated
to the Coxeter diagram is a Coxeter group, W , which is given by generators and
relations as

W = 〈ri | r
2
i = (rirj)

mij = 1 for 1 ≤ i, j ≤ n〉.

The building is comprised of apartments, each of which is a Coxeter complex whose
geometric realization is a tesselation of Rn−1 by (n−1)-simplices called chambers. The
(n− 1)-simplices which are used in the tesselation have dihedral angles π/mij where
the integers mij are specified by the corresponding Coxeter diagram. For example, in
the building for SL3(KP), each apartment can be visualized as the Euclidean plane
tesselated by equilateral triangles, and for SL4(KP), the apartments can be visualized
as Euclidean 3-space tesellated by tetrahedra with two dihedral angles π/3 and the
other two π/2.

For most of the important results, attention may be restricted to apartments, so
we now give a more careful description of them. The Coxeter group W acts simply-
transitively on the set of chambers in an apartment. For convenience, we therefore
specify a fundamental chamber on which W acts to generate the apartment. To
characterize this notion in terms of classes of lattices we let, as in the previous section,
V be an n-dimensional vector space over KP. For L, M lattices on V (freeOP-modules
of rank n), we say that L and M are in the same class if L = λM for some λ ∈ K×

P ,
and we denote the class of L by [L]. As a matter of notation, if the lattice L has
OP-basis {v1, . . . , vn}, we will often write [v1, . . . , vn] for [L]. Fix a basis {v1, . . . , vn}
for V . From [1, p 137], the fundamental chamber C of ∆n can be taken to be the
(n − 1)-simplex with vertices [v1, . . . , vi−1, πvi, . . . , πvn], i = 1, 2, . . . , n. By [1, p
148], the fundamental apartment Σ of ∆n (the apartment generated by the action of
W on C) has vertices [πa1v1, . . . , πanvn] with the ai ∈ Z.
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Our principle interest is the study of maximal orders in central simple algebras,
so we first show that the vertices of our building ∆n may be taken to be maximal
orders in the local algebra AP. From the previous section, we know that all maximal
orders in AP are of the form EndOP

(L) for some lattice L on V . First we determine
all possible redundancy in this characterization.

Proposition 2.1. Let Γ1 = EndOP
(L1) and Γ2 = EndOP

(L2) be two maximal orders

in AP. Then Γ1 = Γ2 if and only if L1 = αL2 for some α ∈ K×
P .

Proof. That EndOP
(L) = EndOP

(αL) is obvious since every element of EndOP
(L)

extends to a unique element of EndKP
(V ) by linearity. We establish the converse

by showing the contrapositive. By the elementary divisor theorem, there is an
OP-basis {e1, e2, . . . , en} of L1 and there are rational integers a1, . . . , an such that
{πa1e1, π

a2e2, . . . , πanen} is an OP-basis of L2. Now L2 = αL1 iff L2 = πaL1 for some
a, so to begin the proof, we assume that L2 6= πaL1, and hence that there is an index
j for which aj 6= a1. Consider the element ϕ ∈ EndOP

(L1) induced by ϕ(ej) = e1,
ϕ(e1) = ej and ϕ(ei) = ei for all i 6= 1, j. Then ϕ(L2) 6⊂ L2 which completes the
proof.

We see from Proposition 2.1 that there is a 1–1 correspondence between classes
of lattices on V and maximal orders in AP, so we will speak of the vertices of our
building interchangeably as maximal orders or as classes of lattices. Also from the
proposition, we see that whenever convenient, given two maximal orders EndOP

(L1)
and EndOP

(L2), we may assume that L1 ⊂ L2. Hence by the elementary divisor
theorem, we may assume that there is an OP-basis {e1, e2, . . . , en} of L2 and there
are rational integers 0 ≤ a1 ≤ . . . ≤ an such that {πa1e1, π

a2e2, . . . , πanen} is an
OP-basis of L1.

We want to discuss the notion of distance in the building ∆n and to show that
the natural distance can be interpreted in terms of the elementary divisors of the
lattices whose endomorphism rings are the maximal orders comprising the vertices
in our building. As an end result, we shall show that the number of vertices at
distance one from a given vertex corresponds to the degree of a certain Hecke operator
(Theorem 3.3), and that the class number of a maximal order in the global algebra
A is the number of orbits of a certain group acting as isometries on the building
(Theorem 5.3).

First we discuss distance in the general framework of a building. Recall that two
chambers in a building are adjacent if they share a codimension-one face (a panel,
which determines a unique wall). Within an apartment, we can be more explicit.
Since the apartments of a building are Coxeter complexes, the notion of adjacency
within an apartment can be described via the Coxeter group as follows (see [6, p
10]): The chambers in an apartment are labeled by the elements of the Coxeter group
W = 〈ri | r2

i = (rirj)
mij = 1 for 1 ≤ i, j ≤ n〉 in such a way that i-adjacency is

defined by w ∼
i

wri. Recall that W acts simply-transitively by left translation on
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the chambers in an apartment, and it is clear that this action preserves i-adjacency.
For SL3(KP), the apartment would be labelled (starting from an arbitrary chamber
g ∈ W as in Figure 2.1. Notice that the lines of different shades and thicknesses
represent the three types of adjacency.

[0,0,0]

232

g

gr

gr3

gr32

gr2

gr23

gr21

gr212
gr121

=
gr1

gr12 gr13

gr31

gr131

gr312

gr321

gr3212

Figure 2.1

A gallery in a building is a sequence of chambers (equilateral triangles for
SL3(KP)), C0, C1, . . . , Cd in which consecutive chambers Ci−1 and Ci (i = 1, . . . d)
are adjacent. The length of the gallery is d. The distance between two chambers is
defined to be the length of any minimal gallery between the two chambers. Finally,
since two distinct adjacent chambers are separated by a unique wall, given any
minimal gallery C0, . . . , Cd, the walls crossed by the gallery are distinct and are
precisely the walls separating C0 from Cd. In particular, the distance d between the
two chambers C0 and Cd is equal to the number of walls separating them (see [1, p
73]). Since any two chambers are contained in an apartment Σ [6, Corollary 3.7],
and any minimal gallery between those chambers lies within Σ, [6, Theorem 3.8], the
distance between chambers can be computed within any apartment which contains
both chambers. Thus we can rephrase the notion of distance again in terms of the
labeling of the apartment by elements of the Coxeter group W . It is clear that the
distance from chamber g to the chamber gw (where w is a reduced word in W ) is the
length of w.

Now we wish to give a formulation of distance which takes advantage of the build-
ing’s characterization as a simplicial complex on classes of lattices and use the fact
that we have restricted our attention to an apartment. Recall that we have fixed a ba-
sis {v1, . . . , vn} for V . The fundamental chamber C of ∆n is the (n−1)-simplex with
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vertices [v1, . . . , vi−1, πvi, . . . , πvn], i = 1, 2, . . . , n, and the fundamental apartment Σ
of ∆n has vertices [πa1v1, . . . , πanvn] with the ai ∈ Z. Since the basis is fixed, we sim-
plify the typography further by writing [a1, . . . , an] for [πa1v1, . . . , πanvn]. Then since
we are concerned only with classes of lattices we observe that each class [a1, . . . , an]
has a unique representative of the form [0, b2, . . . , bn] (with bi = ai − a1).

With this notation we again get a labelling of the apartment Σ, this time by a
labelling of its vertices. For SL3(KP), this is shown in Figure 2.2.

[0,0,0]

C1

C C3C2

[0,0,1] [0,0,2][0,0,-1]

[0,-1,0][0,-1,-1][0,-1,-2] [0,-1,1]

[0,1,0][0,1,-1] [0,1,1] [0,1,2]

[0,2,0] [0,2,1] [0,2,2] [0,2,3]

[0,0,-2]

[0,1,3]

[0,-1,2]

[0,0,3]

Figure 2.2

Remark 2.2. In practice we shall choose the basis {v1, . . . , vn} of V to facilitate the
calculation of distance. For example, to find the distance between vertices v and w,
first represent v = [L] and w = [M ] where L and M are two lattices on V . By the
elementary divisor theorem, there exists a basis {v1, . . . , vn} of L (and hence of V )
and integers a1 ≤ · · · ≤ an so that L = ⊕OPvi and M = ⊕OPπaivi. The collection
{πa1 , . . . , πan} is called the set of elementary divisors of M in L, denoted {L : M}.

The basis {v1, . . . , vn} generates an apartment Σ containing v and w as above.
For any other apartment Σ′ containing v and w, there is an isomorphism (preserving
adjacency) which fixes v and w [1, IV.1]. In particular, the distance between v and
w is independent of the apartment in which we consider v and w, so we may do
our calculations within Σ. Since the vertices v and w are determined in Σ by the
elementary divisors {L : M} (i.e., v = [0, . . . , 0] and w = [a1, . . . , an]), the distance
between v and w is completely determined by the elementary divisors {L : M}.
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In the building ∆n, the chambers correspond to maximal flags of lattices on V (see
[6, Chapter 9.2]):

πL0 ⊂ Ln−1 ⊂ Ln−2 ⊂ · · · ⊂ L0

where the vertices of the chamber are [L0], [L1], . . . , [Ln−1], and π is a uniformizing
parameter for OP. Our goal is to define the distance between vertices in the building.
To do so, we need to connect the notion of distance described in terms of galleries with
that of the elementary divisors of the lattices. We proceed as follows. As in Chapter
9.2 of [6], we can realize the Coxeter group W as a group of reflections generated by
reflections in the codimension-1 faces of the fundamental chamber. In particular, we
can define reflections Si, 1 ≤ i ≤ n in terms of their actions on elementary divisors
(actually on classes of lattices):

Si([α1, . . . , αn]) = [α1, . . . , αi−1, αi+1, αi, αi+2, . . . αn] for 1 ≤ i ≤ n− 1, and

Sn([α1, . . . , αn]) = [αn − 1, α2, . . . , αn−1, α1 + 1].

The first n− 1 reflections merely interchange the ith and i+1st coordinates. In terms
of our standard representation of vertices, we have:

S1([0, β2, . . . , βn]) = [0,−β2, β3 − β2, . . . βn − β2],

Si([0, β2, . . . , βn]) = [0, β2, . . . , βi−1, βi+1, βi, βi+2, . . . , βn] for 2 ≤ i ≤ n− 1, and

Sn([0, β2, . . . , βn]) = [0, β2 − βn + 1, . . . , βn−1 − βn + 1, 2− βn].

To deduce the action on chambers, let C denote the fundamental chamber with
vertices described by the flag

πL0 ⊂ Ln−1 = [0, 1, . . . , 1] ⊂ Ln−2 = [0, 0, 1, . . . , 1] ⊂

· · · ⊂ L1 = [0, . . . , 0, 1] ⊂ L0 = [0, . . . , 0].

It is then straightforward to verify the action of each Si on the chamber C. In
particular, we see that Si fixes Lk for k 6= n − i. That is, each Si fixes n − 1 of
the n vertices of the chamber C, and so C and its image are reflections across a
codimension-1 face of C. Now the Si satisfy all the same relations as the generators
of the Coxeter group W [6], so we associate the Si with the corresponding ri so that
i-adjacency denoted by g ∼

i
gri is compatible with the i-adjacency of C and Si(C).

For later convenience, we now denote Si by Sri
, where ri is the corresponding

generator of W . Moreover, if w = ri1 · · · rik is a word in W , denote by Sw the
composition Sri1

◦ · · · ◦ Srik
. We also continue the abuse of notation Sw(C) where we

mean the chamber whose vertices are determined by the action of Sw on the vertices
of C. Finally we can connect the notion of adjacency given in terms of the Coxeter
group with that of the reflections described in terms of elementary divisors.
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Proposition 2.3. Let C be the fundamental chamber in the apartment Σ with ver-
tices [0, . . . , 0], [0, . . . , 0, 1], . . . [0, 1, . . . , 1], and associate to C a group element
g ∈ W (g ↔ C). Then

1. For any element v ∈ W , the chamber gv ↔ Sv(C).
2. For any chamber labelled by h ∈ W , let Ch denote the corresponding maximal flag

of lattices (i.e., h ↔ Ch). Then for any w ∈ W , the chamber hw ↔ Svwv−1(Ch),
where h = gv.

Proof. We show gv ↔ Sv(C) by induction on the length of v. When v has length one,
v = ri for some i, and by design gri ↔ Sri

(C). To complete the induction we need
only show that g(vr) ↔ Svr(C) where r is any generator ri ∈ W . We have seen that C
and Sr(C) are adjacent chambers, and by the base step of the induction, gr ↔ Sr(C).
Therefore since Sv is a composition of reflections and hence a rigid motion, Sv(C) and
Sv(Sr(C)) are adjacent chambers. Since g ↔ C and gr ↔ Sr(C) are “r-adjacent”, so
are Sv(C) and Sv(Sr(C)). This means that if h ↔ Sv(Sr(C)) and ` ↔ Sv(C), then
h = `r. By induction ` ↔ Sv(C) ↔ gv, hence Sv(Sr(C)) ↔ h = `r = (gv)r = g(vr)
as required.

For the second part of the proposition, suppose that h ↔ Ch. Write h = gv
for a unique v ∈ W . Then by the first part of the proposition, Ch = Sv(C) and
hw = gvw ↔ Svw(C). Observing Svw(C) = Svwv−1(Sv(C)) = Svwv−1(Ch) completes
the proof.

Now that we have a good grasp on different characterizations of distance between
chambers, we would like to define the distance between two vertices in the building.
An obvious choice is to define the distance to be the minimal length among all galleries
whose initial chamber contains one vertex and whose ending chamber contains the
other. First we show that this is well-defined.

Proposition 2.4. Let q be the cardinality of the residue class field k of KP. Then
for n ≥ 2, every vertex in ∆n is contained in precisely rn chambers where

rn =
qn − 1

q − 1
·

qn − q

q(q − 1)
·

qn − q2

q2(q − 1)
· · ·

qn − qn−2

qn−2(q − 1)
.

Remark 2.5. For computational convenience, we note that r2 = q + 1 and rn+1 =(
qn+1−1

q−1

)
rn.

Proof. A vertex is contained in a chamber (i.e., is a 0-simplex in the chamber) if and
only if the chamber is part of the residue of the vertex. By [6, Chapter 9.2], such a
residue is isomorphic to a building of type An−1(k). By [6, Chapter 1.2], the chambers
of this spherical building are maximal flags in an n-dimensional vector space U over
k. That is, the chambers are nested sequences of subspaces

0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un−1 ⊂ U (with dim(Ui) = i).
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To count the number of sequences is elementary: Any 1-dimensional space is spanned
by a single nonzero vector of which there are qn − 1 in U . For each of these vectors,
any nonzero multiple of it generates the same subspace, and this is the only possible
redundancy. Thus there are (qn−1)/(q−1) possible U1. Suppose that U1 ⊂ · · · ⊂ Uj

have been chosen. To find all possible Uj+1 ⊃ Uj, we need only ask how many distinct
subspaces of dimension j + 1 can be generated by adding a single vector to a basis of
Uj. Similar to the first case, there are qn − qj choices of vectors in U not in Uj. To
determine the redundancy, we observe that for u, w ∈ U \ Uj, Uj ⊕ 〈u〉 = Uj ⊕ 〈w〉 if
and only if w = λu + v for v ∈ Uj and λ 6= 0. This yields (qn − qj)/qj(q− 1) possible
Uj+1. From here the proposition is clear.

This generalizes the well-known SL2 case in which the chambers are 1-simplices
and the building ∆2 is a tree. The proposition states that the tree is (q + 1)-regular.

3. Hecke Operators and the Bruhat-Tits Building

In this section we demonstrate that the number of vertices in the building ∆n at
distance one from a given vertex is the degree of a certain Hecke operator. In the
case of SL2, this provides another (cf. Proposition 2.4) proof of the (q +1)-regularity
of the tree (building) ∆2. As suggested by the special cases 3 ≤ n ≤ 5 in Proposi-
tion 3.5 below, for n ≥ 3, it is unlikely that the degree of the Hecke operator is equal
to the number given in Proposition 2.4, however there does appear to be an intriguing
relationship between the two numbers.

We shall need generalizations of a few theorems of Shimura [8]. Let V be our fixed
n-dimensional vector space over KP. For two lattices L and M on V , let {L : M}
denote the set of elementary divisors of M in L. Fix a lattice L on V and a basis
of L which identifies GL(L) with GLn(OP). Then the group G = GLn(OP) acts (on
the left) on the set of lattices on V .

The proof of the following proposition is essentially identical to Shimura’s Lemma
3.12 [8] with SL2(Z) replaced by G, since he uses only that the ring over which he is
working is a PID.

Proposition 3.1. Let L, M , N be lattices on V . Then {L : M} = {L : N} if and
only if there exists a g ∈ G such that gM = N .

For elements α1, . . . , αn ∈ OP, let 〈α1, . . . , αn〉 denote the diagonal matrix in
Mn(OP) with diagonal entries α1, . . . , αn. Let ξ = 〈πa1 , . . . , πan〉 ∈ Mn(OP) with

the ai ∈ Z, a1 ≤ . . . ≤ an. It is easily seen that ξ ∈ G̃, the commensurator of G, so
by Proposition 3.1 of [8] we have

GξG = ∪d
i=1Gαi = ∪e

j=1βjG

where d = [G : G∩ ξ−1Gξ] and e = [G : G∩ ξGξ−1] are finite. The integer d is called
the degree of the double coset GξG.
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Let ∆(`) = {M ∈ Mn(OP) | ordP(det(M)) = `}. The existence of a Smith normal
form tells us that for any α ∈ ∆(`), GαG = G〈πa1 , . . . , πan〉G where 0 ≤ a1 ≤ . . . ≤
an are rational integers, and

∑n

1 ai = `. By the class number formula [2, pp 19-20],
for any element α ∈ ∆(`), GαG = ∪νGαν with finitely many cosets. In particular,
GαG has finite degree. With a proof identical to Lemma 3.13 of [8], we have

Proposition 3.2. Let ξ = 〈πa1 , . . . , πan〉 ∈ ∆(`) as above, and let L be a lattice on
V . Then there is a 1–1 correspondence between cosets Gξν in GξG and lattices M on
V such that {L : M} = {πa1 , . . . , πan}.

We now turn to our task of determining how many vertices of our building are at
distance 1 from a fixed vertex. It follows from Proposition 2.4 that the number of
chambers containing a given vertex is finite, so it makes sense to define the distance
between two vertices as the minimal length among all galleries whose initial chamber
contains one vertex and whose ending chamber contains the other.

Theorem 3.3. Let v be any vertex in the building ∆n. Then the number of vertices
in ∆n which are distance one from v is equal to

1. the degree of G〈1, π〉G if n = 2, and
2. the degree of G〈1, π, . . . , π, π2〉G if n ≥ 3.

Remark 3.4. In a global setting, with G = SL2(Z) and π = p a prime, the double

coset G

(
1 0
0 p

)
G is the standard Hecke operator Tp which acts on modular forms of

integral weight. This is our motivation for referring to these double cosets as Hecke
operators. Serre defined related operators as formal sums on the vertices of ∆2 [7].
These are also called Hecke operators as they satisfy recursion relations paralleling
those of the standard Hecke operators.

Proof. The differences between the two cases stem principally from the very different
Coxeter diagrams which describe the buildings for SL2 and for SLn, n ≥ 3. Since the
result stated in this proposition is known for n = 2, we start the proof with the case
of n ≥ 3, and at the end of the proof comment about the differences which govern
the SL2 case.

Let v and w be vertices in the building ∆n. It is clear from the definition of distance
given in terms of galleries that vertices v and w are distance one apart if and only
if they are contained in chambers Cv and Cw which share a codimension-1 face, and
where Cw is not in the residue of v (i.e. v 6∈ Cw).

As we saw above, Cv and Cw lie in a common apartment Σ. Let L and M be lattices
on V so that v = [L] and w = [M ]. By Remark 2.2, we may assume that relative to
some basis v = [0, . . . , 0] and w = [0, a2, . . . , an]. The vertex v is contained in the
fundamental chamber C of Σ with vertices [0, . . . , 0], [0, . . . , 0, 1], . . . ,[0, 1, . . . , 1].

From the discussion preceding Proposition 2.3, we know the reflections Sri
each

fix [0, . . . , 0] if and only if 1 ≤ i ≤ n − 1, hence the residue of v in Σ consists of
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the chambers Su(C), where u ∈ 〈ri | 1 ≤ i ≤ n − 1〉. Thus Cv = Sξ(C) for some
ξ ∈ 〈ri | 1 ≤ i ≤ n− 1〉. Let g ∈ W correspond to the fundamental chamber C. Then
by Proposition 2.3, Cv ↔ gξ. Moreover, since Cv and Cw are adjacent, but Cw is
not in the residue of Cv, Cw ↔ gξrn, that is Cw = Sξrn

(C) by Proposition 2.3. This
means that w = Sξrn

(v) = Sξrn
([0, . . . , 0]) = Sξ([0, 1, . . . , 1, 2]). On the other hand,

each Sri
for i < n simply permutes the coordinates. Thus w = [a1, . . . , an], where

{a1, . . . , an} is simply a permutation of {0, 1, . . . , 1, 2}. By permuting the original
basis for L, we may assume that v = [L] = [0, . . . , 0] and w = [M ] = [0, 1, . . . , 1, 2].

Thus to find all vertices distance one from v, we need only seek all classes of lattices
[M ] for which [M ] has elementary divisors [0, 1, . . . , 1, 2] relative to [L]. Since we are
concerned only with classes of lattices, this is the same as finding all lattices M so
that with respect to some OP-basis of L, the elementary divisors of M in L, {L : M},
are {1, π, . . . , π, π2}. By Proposition 3.2, this number is the same as the degree of
the double coset G〈1, π, . . . , π, π2〉G. Note that if M1 and M2 are distinct lattices
which satisfy {L : M1} = {L : M2}, then [M1] 6= [M2] and so correspond to distinct
vertices, for if M1 = λM2, {L : M1} = {λ, λπ, . . . λπ, λπ2} = {L : M2} if and only if
λ ∈ OP

×, and hence M1 = λM2 = M2.
For n = 2, there is a minor difference in the appearance of the final result arising

from the difference of the Coxeter diagrams for Ã1 and Ãm for m ≥ 2. Using the
distance function described by Serre [7] and discussed in the introduction, two classes,
[L] and [M ], of (rank 2) lattices are distance one apart if and only if {L : M} =
{πa, πa+1}. Again since we are concerned only with classes of lattices, it suffices to
find all lattices M with {L : M} = {1, π}. Hence the number of vertices at distance
one from a given vertex in the building for SL2 is the degree of the double coset

G

(
1 0
0 π

)
G, which is q + 1. As mentioned above, with G = SL2(Z) and π = p a

prime in Z, this is the standard Hecke operator Tp which acts on modular forms of
integral weight.

We compute the degree of the Hecke operator in several cases.

Proposition 3.5. Let rn be (as in Proposition 2.4) the number of chambers contain-
ing a given vertex in ∆n, and ωn be the number of vertices having distance one from
a given vertex in ∆n. Let q denote the cardinality of the residue class field OP/πOP.
Then

1. r2 = ω2 = q + 1,
2. qr3 = q(1 + 2q1 + 2q2 + q3) = ω3,
3. qr4 = (q + 1)ω4 = r2ω4, and
4. qr5 = (1 + 2q1 + 2q2 + q3)ω5 = r3ω5.

Remark 3.6. Based solely upon the relatively complicated relations occuring above
(and not on any insight into why this relationship exists), it is natural to conjecture
that for n ≥ 3, qrn = rn−2ωn.
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Proof. The result is obtained by a straightforward, but relatively tedious computation.
The result for n = 2 is well-known. We indicate the method for n = 3, and leave
the remaining details to the reader. By consideration of the Smith normal form, it is
immediate that

∆(3) = G〈1, 1, π3〉G ∪G〈1, π, π2〉G ∪G〈π, π, π〉G.

Moreover, by Theorem II.4 of [2], the class number (i.e. the total number of right
cosets in the union) is equal to 1+q+2q2+2q3+2q4+q5+q6 where q is the cardinality
of the residue class field OP/πOP. Obviously the 1 corresponds to the double coset
G〈π, π, π〉G = G〈π, π, π〉, leaving the rest to distribute between the other two double
cosets.

By Theorems II.2 and II.3 of [2], we may assume that every representative of the
right cosets is in Hermite normal form. This done, we use Theorem II.10 of [2] to
associate the right cosets to the appropriate double coset. In particular, we use that
GαG = GβG if and only if α and β have the same determinantal divisors. The result
now follows from a case by case analysis.

4. The case of SL3

When n = 3, we know that the fundamental apartment is the Euclidean plane
tiled by equilateral triangles. Recall that we may restrict our attention to galleries
contained within the fundamental apartment Σ. Within the apartment, each vertex
is contained in six equilateral triangles which together form a regular hexagon with
the vertex at center. Moreover, each vertex is the center of a sequence of concentric
hexagons (see Figure 4.1), expanding out from the vertex. This in turn gives a
well defined notion of the radial distance from our vertex to any other vertex in the
plane, the vertex at center having radial distance zero, the six vertices in the hexagon
containing the vertex having radial distance 1, the next 12 vertices radially outward
from the center having distance 2, and so on.

Because the fundamental apartment is a regular tiling of the plane, it is clear that
a rigid motion will not alter distances, so there is no loss in considering the distance
from an arbitrary vertex [0, a, b] to the “origin” [0, 0, 0]. Consider three fundamental
classes of lattices: e1 = [0, 1, 0], e2 = [0, 0, 1], and e3 = [0, 1, 1]. We abuse the notation
further by thinking of these classes of lattices as ordered triples in Z3. Then for any
class of lattices [0, a, b], we have:

[0, a, b] = ae1 + be2 = (a− b)e1 + be3 = (b− a)e2 + ae3.

Proposition 4.1. The radial distance of a point [0, a, b] from [0, 0, 0] is given by

r = min{ |a|+ |b|, |a− b|+ |b|, |a− b|+ |a| } = max{ |a|, |b|, |a− b| }.

Proof. Since any two of the three vectors ei are linearly independent, the vertex [0, a, b]
can be expressed as a unique linear combination of any two of them. Consider the
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r = 1

r = 3

r = 2

Figure 4.1

three sums of the absolute values of the coefficients corresponding to these linear
combinations. The first equality of the proposition asserts that the radial distance is
the smallest of these three sums.

Our three fundamental vectors e1, e2, and e3 determine three lines through the
origin in our fundamental apartment Σ. Clearly if [0, a, b] = rei for some i then r is
the radial distance, and it is trivial to check that the coordinates satisfy the conditions
of the proposition.

Otherwise [0, a, b] lies in the interior of one of the six sectors determined by the
lines containing the ei. The point is then in the interior of the region bounded by
two of the six rays εiei, for some i = 1, 2, 3, and εi = ±1 (see Figure 4.2); call them
f1 and f2.

Since f1 and f2 are linearly independent, there are unique positive integers s and t
for which [0, a, b] = sf1 + tf2. Moreover, it is clear that the radial distance r = s + t,
since each move of unit length parallel to either vector fi crosses from one “radial
band” to the next. That is, each such move of unit length proceeds from a vertex
having radial distance r to one having radial distance r + 1.

Let f3 be whichever of the three vectors ei is not a multiple of f1 or f2. Note
that vertices in the sector determined by the rays f1 and f2 which have a fixed
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s

t [0,a,b]

r=1

r=5

f1

f2

r=3

Figure 4.2

radial distance from [0, 0, 0] lie on line segments which are parallel to f3. Express
[0, a, b] = uifi +vif3, i = 1, 2. We will show that |ui|+ |vi| ≥ s+ t which will establish
the first part of the proposition by the comments in the first paragraph of the proof.

To establish |ui|+ |vi| ≥ s + t, we show that |ui| = s + t. This is trivial since uifi

brings us to a vertex having radial distance |ui| from [0, 0, 0]. Movement parallel to
f3 is through a set of vertices having a fixed radial distance from [0, 0, 0], so the radial
distance of [0, a, b] = uifi + vif3 is |ui| = s + t.

Now a simple algebraic argument establishes that

min{ |a|+ |b|, |a− b| + |b|, |a− b|+ |a| } = max{ |a|, |b|, |a− b| }.

Theorem 4.2. The distance from [0, 0, 0] to v = [0, a, b] is given by

d =

{
2(r − 1) if v = λei, λ ∈ Z

2(r − 2) + 1 otherwise

where r is the radial distance from [0, 0, 0] to v.

Proof. First we observe that v has distance zero from [0, 0, 0] if and only if v = ±ei

and r = 1 since such vertices are vertices of the chambers which form the residue of
[0, 0, 0] in the apartment Σ. This much agrees with the formula, so we assume r ≥ 2.
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We consider two cases, radial and nonradial, corresponding to whether or not v =
λei. Consider the radial case first. Then r = |λ| ≥ 2, and the situation is pictured in
Figure 4.3. It is clear that a minimal gallery must lie within the “strip” containing
the residues (hexagons) of [0, 0, 0] and v, for any gallery which leaves the strip must
still cross at least as many walls (once outside the strip) and must also cross a wall
to exit and one to reenter the strip. It is then clear from the figure that a minimal
gallery has length 2(r − 1) which completes the proof in the radial case.

[0,0,0] [0,a,b]

Figure 4.3

In the nonradial case, to proceed from [0, 0, 0] to a vertex at radial distance 2
requires crossing at least one wall. To proceed from this vertex to any vertex of
radial distance 3 requires crossing at least two more walls. It is then clear that it
requires crossing at least 1 + 2(r − 2) walls to proceed from [0, 0, 0] to any vertex
of radial distance r (r ≥ 2). This provides a lower bound for the distance. To
establish an upper bound, we simply provide a gallery of length 1 + 2(r − 2). Since
v is not a radial point, it lies in a unique sector. As in Proposition 4.1, we can write
v = [0, a, b] = sf1 + tf2 with s and t positive integers. Then the radial distance
r = s + t. It is clear from Figure 4.4 that the highlighted gallery is simply the
combination of a radial gallery followed by a “radial-like” gallery whose lengths are
2(s−1)+2(t−1)+1, where the “1” accounts for the crossing from the “s”-gallery to
the “t”-gallery. We therefore have a gallery of length 2(s + t− 2) + 1 = 2(r − 2) + 1
which provides our upper bound and completes the proof.

Next we return to the question of the number of vertices at distance one from a
given vertex. A general answer to the problem was given in Theorem 3.3 in terms of
the degree of a double coset. Given an explicit distance function for the n = 3 case,
we now give a brief alternate proof.

Fix a lattice L on V and let M be any other lattice on V . Recall that the vertices
of our building are in 1–1 correspondence with the classes of lattices on V , so we
may feel free to scale lattices. If {L : M} = {πa1 , πa2 , πa3} with a1 ≤ a2 ≤ a3,
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t

s

[0,a,b]

[0,0,0]

Figure 4.4

then {L : π−a1M} = {1, πa2−a1 , πa3−a1}. In the notation of §2, [L] = [0, 0, 0], and
[M ] = [0, a, b], where 0 ≤ a = a2 − a1 ≤ b = a3 − a1.

Applying Proposition 4.1 and Theorem 4.2, we see that the radial distance from
[M ] to [L] is b, and that the distance d = 1 if and only if a = 1 and b = 2. Thus we
need to find all lattices with elementary divisors {L : M} = {πa, πa+1, πa+2}. Since
we are concerned only with the classes of the lattices, it suffices to consider all lattices
with elementary divisors {L : M} = {1, π, π2}. By Proposition 3.2, there is a 1–1
correspondence between such lattices and the right cosets Gξν in G〈1, π, π2〉G. Also
note for any two such lattices M1 and M2, that [M1] 6= [M2] since M2 = λM1 implies
{L : M2} = {λ, πλ, π2λ} = {1, π, π2} if and only if λ is a unit in OP, in which case
M1 = M2. We summarize this result as:

Proposition 4.3. In the Bruhat-Tits building for SL3(KP) the number of vertices
at distance one from a given vertex is equal to the number of of right cosets Gξν in
the double coset G〈1, π, π2〉G.

5. Class Numbers

Now we return to the global setting and consider the global central simple algebra
A over the number field K. Recall that we have chosen a finite set S of primes of K,
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containing all the infinite ones, for which R = O(S) has strict class number one (when
K = Q, we may assume that R = Z). Actually, we require this assumption only to
invoke Eichler’s theorem in Theorem 5.3. We have fixed a maximal R-order Λ. Note
that because R is a PID, Λ is a free R-module. As in §1, let P be a finite prime
of K not contained in the set S. We also assume that P is unramified in A. Let

R(P) = O(S∪{P}), and let Λ(P) = Λ⊗R R(P). The goal of this section is to characterize

the class number of Λ as the number of orbits of the unit group Λ(P)× acting on a
global analog of our Bruhat-Tits building for SLn(KP).

Let X consist of the set of maximal R-orders Γ in A such that Γq = Λq for all primes
q of R, q 6= P. This is the same as the set of primes q of O not in S ∪ {P}. By the
local-global correspondence for orders, the elements in X are in 1–1 correspondence
with the vertices of the Bruhat-Tits building ∆n for SLn(KP). We make the set X
into a graph by defining the distance between two orders to be the distance between
their completions at the prime P, and by placing an edge between two orders in X
if and only if they are distance one apart. Then from section 3 we know that X is a
regular graph. Note that X is not necessarily a connected graph. For n = 3, the graph
induced on an apartment is the union of three isomorphic connected components, each
(combinatorially) isomorphic to the original apartment. We can actually say more
about the structure of the graph X utilizing the correspondence between X and the
building ∆n; however, we do not require the knowledge of any additional structure
for our current purposes.

Let JA denote the ideles of the algebra A. As a set

JA = {α̃ = (αp) ∈
∏

p

A×
p | αp ∈ Λ×

p for almost all p}

where the product is over all primes p of K including the infinite ones.
Since all maximal orders in the local algebras are conjugate (in fact, unique when

Ap is a division algebra), the local-global correspondence between orders tells us that
the ideles JA act transitively on the elements of X:

Λ ↔ {Λp} ↔ {α−1
p Λpαp} = {Γp} ↔ Γ = α̃−1Λα̃.

By a left Λ-ideal in A we mean an R-lattice I on A such that Ip = Λpαp for all
finite p ∈ R and αp ∈ A×

p . Using the Invariant Factor Theorem (Theorem 81.11 of
[3]), it is easy to see that αp ∈ Λ×

p for almost all primes p, so as shorthand, we will
write I = Λα̃ where α̃ = (αp) ∈ JA is any idele giving the proper localizations at the
finite places. Two left Λ-ideals I and J are in the same ideal class if I = Jα for
some α ∈ A×. Let

U(Λ) = {α̃ = (αp) ∈ JA | αp ∈ Λ×
p for all finite primes p of R}.

Then the left Λ-ideals are in 1–1 correspondence with the cosets U(Λ)\JA, and the
left Λ-ideal classes are in 1–1 correspondence with the double cosets U(Λ)\JA/A×.
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The number of such ideal classes is finite (e.g., see Theorem 26.4 of [4]), and is called
the class number of Λ. We have now defined both objects we need to compare.

Consider the R(P)-order

Λ
(P)

= Λ⊗R R(P) = ∩q6=P(Λq ∩ A)

where the intersection is over all finite R-primes q. Note that every maximal order
Γ in X generates the same R(P)-order since Λq = Γq for all primes q 6= P of R. Let

G = Λ(P)×, the unit group of Λ(P).

Proposition 5.1. There is a natural group action of the group G on the graph X in
which G acts as a group of isometries.

Proof. As usual, embed A× into JA as the diagonal. Note that for all finite primes

q 6= P of K, Λ(P)
q = Λq (and Λq = Aq for q a finite prime in S). Consequently,

α ∈ Λ(P)× implies that α ∈ Λ×
q for all q 6= P. Then G = Λ(P)× acts by conjugation

on the maximal orders in X: For Γ ∈ X, and α ∈ G, we have

α−1Γ α ↔ {α−1Γq α} ↔

{
Γq = Λq if q 6= P

α−1ΓP α if q = P

}
↔

{
Λq if q 6= P

α−1ΓP α if q = P

}
∈ X,

so G acts on the vertices of X. To show that the action is an isometry and in
particular to show the action takes edges to edges, choose two vertices Γ, Γ′ ∈ X. By
definition, the distance between two orders in X is defined to be the distance between
their completions at P in ∆n. Thus if α ∈ G, we need only show that the distance
between ΓP and Γ′P is the same as the distance between α−1ΓP α and α−1Γ′P α.

Recall that all maximal orders in AP are conjugate to ΛP, so we set ΓP = γΛPγ−1

and Γ′P = γ′ΛPγ′−1, γ, γ′ ∈ A×
P. Let L be a lattice on the vector space V (over KP)

so that ΛP = EndOP
(L). Then ΓP = EndOP

(γL) and Γ′P = EndOP
(γ′L). From

Remark 2.2, we see that the distance between orders is completely determined by
the elementary divisors of the lattices which determine the orders. Thus the distance
between ΓP and Γ′P is completely determined by the elementary divisors {γL : γ ′L}

while the distance between α−1ΓP α and α−1Γ′P α is completely determined by the

elementary divisors {α−1γL : α−1γ′L}. Using the linearity of α, it is trivial to see
that these sets of elementary divisors are equal; hence our group action determines
an isometry.

Before stating our main result, it is convenient to remind the reader of Eichler’s
norm theorem (e.g. see Theorem 34.9 of [4]).

Theorem 5.2 (Eichler). Let R be a Dedekind domain with quotient field K, and let
A be a central simple algebra over K which satisfies the Eichler condition over R. Let
L be a normal ideal in A. Then L is a principal ideal if and only if its reduced norm
is a principal ideal Rα for α ∈ u(A).
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Here, the Eichler condition is always satisfied for central simple algebras of dimen-
sion n2, n ≥ 3 (see [4, Remark 34.4]). Also, a normal ideal is one whose left- (or
equivalently right-) order is maximal, and

u(A) = {α ∈ K× | αp > 0 for all infinite p for which Ap is ramified}.

Note that because we constructed R to have strict class number one, the norm of
any normal ideal in A is a principal ideal with totally positive generator, and hence
automatically satisfies the requirements of Eichler’s theorem.

Theorem 5.3. The number of orbits in X under the action of G = Λ(P)× is finite
and equal to the class number of Λ.

Proof. We prove our result by establishing a bijection between the following sets:

U(Λ)\JA/A× ↔ Λ×
PK×

P\A
×
P/Λ

(P)×
↔ X/G.

Since Λ is a maximal R-ideal, Λ(P) is a maximal R(P)-ideal (see e.g., Chapter IV of

[5]). By Eichler’s theorem and our condition on R, we see that Λ(P) has class number
one, that is,

|U(Λ
(P)

)\JA/A×| = 1 or JA = U(Λ
(P)

)A×.

Also, since R has class number one, we have that the ideles of K, K×
A

, can be expressed

K×
A

= U(R)K×. For notational convenience, we “decompose” the groups U(Λ(P)) and
U(R) and write

JA = A×
∞ · A×

P ·
∏

q6=P

Λ
(P)
q

×
· A× and K×

A
= K×

∞ ·R×
P ·

∏

q 6=P

R×
q ·K

×.

where A×
∞ and K×

∞ denote (respectively) the product of A×
p (respectively K×

p ) over the

infinite primes of K. We recall that for finite primes q 6= P we have Λ(P)
q = Λq. For

q ∈ S (finite), Λ(P)
q = Λq = Aq and Rq = Kq, while for q /∈ S (q 6= P), Λ(P)

q = Λq 6= Aq

and Rq = Oq. In particular, for all finite primes q 6= P, R×
q ⊂ Λ×

q . Finally, RP = OP.
Thus,

JA = A×
∞ ·A×

P ·
∏

q6=P

Λ×
q · A

× and K×
A

= K×
∞ · O×

P ·
∏

q6=P

R×
q ·K

×.

Consistent with the above decompositions, write an element α̃ ∈ JA as α̃ =

(α∞; αP, α0) · a; similarly, for k̃ ∈ K×
A

, write k̃ = (k∞; kP, k0) · k. Consider the
map

Λ×
PK×

P\A
×
P/Λ

(P)×
→ U(Λ)\JA/A× defined by Λ×

PK×
PaPΛ

(P)×
7→ U(Λ)(1; aP, 1)A×.
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First we show that this map is well-defined. We only need to show that

U(Λ)(1; λPkPaPλ, 1)A× = U(Λ)(1; aP, 1)A×

where λP ∈ Λ×
P, kP ∈ K×

P and λ ∈ Λ(P)×. Using K×
A

= U(R)K×, we see that

U(Λ)K×
A
K× = U(Λ)K×. This, together with the fact that K× is in the center of A×

and A×
q for all primes q, yields U(Λ)(1; λPkPaPλ, 1)A× = U(Λ)(1; aPλ, 1)A×. Now

U(Λ)(1; aPλ, 1)A× = U(Λ)(λ−1; aP, λ−1)A× since Λ(P)× ⊂ A× is embedded in JA as

the diagonal. Since Λ(P)× is contained in A×
∞ and Λ×

q for q 6= P, (λ−1, 1, λ−1) ∈ U(Λ)
which yields the result.

Next we show that the map is onto: By Eichler’s theorem, we have that JA =

U(Λ(P))A×, and since U(Λ) and U(Λ(P)) differ only in the P-th component, it is
trivial to see that for any α̃ = (αp) ∈ JA, U(Λ)α̃A× = U(Λ)(1; αP, 1)A×.

Finally we show that the map is one-to-one: Suppose that

U(Λ)(1; αP, 1)A× = U(Λ)(1; βP, 1)A×.

Then (1; αP, 1) = (λ∞a, λPβPa, λqa) where (λ∞; λP, λq) ∈ U(Λ) and a ∈ A×. It
follows that αP = λPβPa where λP ∈ Λ×

P, and a ∈ A×, and λqa = 1 for all q 6= P.

Thus a ∈ ∩q6=P(Λ×
q ∩ A×) = Λ(P)×, and so αP ∈ Λ×

PK×
PβPΛ(P)× which completes the

proof of injectivity.

Now we show that there is a bijection between Λ×
PK×

P\A
×
P/Λ(P)× and the orbits

X/G of G in X. Recall that the points in X are maximal R-orders Γ in A satisfying
Γq = Λq for all q 6= P; thus the points in X are in 1–1 correspondence with maximal
OP-orders in AP, all of which are of the form α−1

P ΛPαP for some αP ∈ A×
P. Now P is

unramified in A by choice, and we have chosen to identify AP with Mn(KP) in such a
way that ΛP = Mn(OP) = Mn(RP). By Corollary 37.26 of [4], the normalizer of ΛP is
Λ×

P ·K
×
P , so the points of X are in 1–1 correspondence with the cosets Λ×

PK×
P\A

×
P. Let

Γ ∈ X, with ΓP = α−1
P ΛPαP for some αP ∈ K×

P . An orbit of Γ under the action of G =

Λ(P)× thus corresponds to the double coset Λ×
PK×

PαPΛ(P)×. This correspondence is

obviously onto. Moreover, if Λ×
PK×

PαPΛ(P)× = Λ×
PK×

PβPΛ(P)×, then βP = λPkPαPλ

for some λP ∈ Λ×
P, kP ∈ K×

P and λ ∈ Λ(P)×. Thus β−1
P ΛPβP = λ−1α−1

P ΛPαPλ

(since λPkP is in the normalizer of ΛP) is in the same orbit as α−1
P ΛPαP. Hence the

correspondence is one-to-one.
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