
Hecke Operators for the Symplectic Group
and Buildings

Thomas R. Shemanske

June 21, 2001

Abstract

We demonstrate that (isomorphic images of) the generators of the Hecke algebra
for the symplectic group have generating series which are equal to highly structured
rational functions. For two of the (n + 1) generators of the algebra, the denominators
of those rational functions correspond to the standard and spinor zeta functions; in the
remaining cases, they represent new zeta functions. We also give two representations of
the classical Hecke algebra. The first of these is achieved by defining Hecke operators
which act on the vertices of the Bruhat-Tits building for Spn(Qp), while the second is
related to but distinct from Satake’s isomorphism between the local Hecke algebra and
a ring of polynomials invariant under a certain Weyl group.

1 Introduction

Hecke theory for automorphic forms on the symplectic group is still very much in its infancy.
Simplisticly, the major stumbling block is that unlike the elliptic modular case, there is no
obvious connection between the known invariants of the Hecke algebra (Satake p-parameters)
and the Fourier coefficients of a Hecke eigenform, although there has been some interesting
work done: using a partial knowledge of Satake parameters to infer complete knowledge ([7]),
or correlations between Fourier coefficients and Hecke eigenvalues in degree 2 ([4]). Still we
are very far away from a satisfactory general theory.

In this paper, we have two major goals. The first is to demonstrate that (isomorphic
images of) the generators of the Hecke algebra for the symplectic group have generating series
which are equal to highly structured rational functions. For two of the (n + 1) generators
of the algebra, the denominators of those rational functions correspond to the standard and
spinor zeta functions; in the remaining cases, they represent new zeta functions. The second
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goal is to give two representations of the Hecke algebra. The first of these is achieved by
defining Hecke operators which act on the vertices of the Bruhat-Tits building for Spn(Qp),
while the second is related to but distinct from Satake’s isomorphism between the local Hecke
algebra and a ring of polynomials invariant under a certain Weyl group. As a byproduct
of the representation on the vertices of the building, we derive a number of what might be
called “arithmetic” results about the building for Spn.

It is well-known (see e.g., Cartier [2], Theorem 4.1) that the Satake map shows that the
p-part of the Hecke algebra associated to the symplectic group is isomorphic to a polynomial
ring invariant under a certain Weyl group. In [1], Andrianov and Zhuravlev refer to this
isomorphism as the spherical map, and give a rather complicated description of it in terms
of right cosets of the double cosets which generate the Hecke algebra. In this paper we
define a slightly different isomorphism with several advantages: the isomorphism is defined
naturally in terms of the double cosets which generate the Hecke algebra (not in terms of
right cosets), and derives its shape from a representation of the local Hecke algebra on the
vertices of the Bruhat-Tits building for Spn(Qp). This correspondence makes role of the Weyl
group completely explicit. Then we exploit the isomorphism of the Hecke algebra with the
polynomial ring by using that setting to show the images of the standard generators of the
Hecke algebra have generating series which produce structured rational functions. Finally,
we show that our representations are related by establishing the validity of a commutative
diagram.

The key to understanding both representations is to understand the structure of the
Bruhat-Tits building for Spn(Qp), in particular how the vertices of an apartment are associ-
ated with symplectic elementary divisors relative to a fixed a lattice. It is of course here that
the Weyl group plays a natural role. Moreover, it is through the natural connection between
right cosets of a double coset and (sub)lattices of a given lattice with prescribed elementary
divisors that we begin to develop our representations. In section 2, we describe the connec-
tion between lattices and right cosets. In section 3, we look carefully at the building for
Spn, give labellings of an apartment in terms of symplectic divisors, and discuss how special
vertices are arithmetically distinguished. We then begin to consider polynomials invariant
under the Weyl group and a natural correspondence between vertices and monomials which
forms the basis of our representations. Finally, we define our “Hecke” operators in the poly-
nomial algebra. In the final section, we define the two representations and prove that they
are indeed ring homomorphisms, and are related via a commutative diagram. At the end,
we make a brief comparison of the Satake isomorphism and our map.

2 Preliminaries

2.1 The Classical Hecke Algebra

Much of this material can be found in Chapter 3 of [1]; we state it here to set the notation.
Let Γ = Γn = Spn(Z) ⊂ SL2n(Z), and let G = GSp+

n (Q) ⊂ GL2n(Q) be the group of
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symplectic similitudes with scalar factor r(M) ∈ Q×
+:

GSp+
n (Q) = {M = ( A B

C D ) ∈M2n(Q) | AtC = CtA, BtD = DtB, AtD − CtB = r(M)I2n}

= {M = ( A B
C D ) ∈M2n(Q) | ABt = BtA, CDt = DCt, ADt −BCt = r(M)I2n}.

Let H denote the rational Hecke algebra associated to the pair Γ and G. That is, as
a vector space, H is generated by all double cosets ΓξΓ (ξ ∈ G), and we turn H into an
algebra by defining the multiplication law as follows: Given ξ1, ξ2 ∈ G, define

Γξ1Γ · Γξ2Γ =
∑

ξ

c(ξ)ΓξΓ, (2.1)

where the sum is over all double cosets ΓξΓ ⊆ Γξ1Γξ2Γ, and the c(ξ) are nonnegative integers
(see [6]). There is an alternate characterization of the Hecke algebra which will be convenient
as well. Let L(Γ, G) be the rational vector space with basis consisting of right cosets Γξ for
ξ ∈ G. The Hecke algebra can be thought of as those elements of L(Γ, G) which are right
invariant under the action of Γ. Thus we can and will think of a double coset ΓξΓ = ∪Γξν

as the disjoint union of right cosets and as the sum of those right cosets
∑

Γξν ∈ L(Γ, G).

The global Hecke algebra, H, is generated by local Hecke algebras, Hp, one for each
prime p, obtained as above by replacing G by G ∩GL2n(Z[p−1]) in the above construction.
Hp is generated by double cosets ΓξΓ with ξ of the form diag(pa1 , . . . , pan , pb1 , . . . , pbn) where
a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1 are integers with pai+bi = r(ξ) for all i. It is occasionally
useful to consider the “integral” Hecke algebra Hp generated by all ξ as above with ξ =
diag(pa1 , . . . , pan , pb1 , . . . , pbn) ∈M2n(Z).

In this paper, we want to work with a p-adic version of the local Hecke algebra. This local
Hecke algebra is isomorphic to a subalgebra of the Hecke algebra associated to the Hecke
pair Γp = Spn(Zp) and Gp = GSpn(Qp). To be explicit we set Hp to be the Hecke algebra
generated as a Q-vector space by double cosets ΓpξΓp with ξ = diag(pa1 , . . . , pan , pb1 , . . . , pbn)
as above, and let Hp denote the integral subring as above.

The key to observing the above isomorphism is the following observation:

Lemma 2.1. Let ξ ∈ GSp+
n (Q) ∩ GL2n(Z[p−1]). If ΓξΓ is the disjoint union ∪Γαi, then

ΓpξΓp is the disjoint union ∪Γpαi.

Proof. Without loss of generality, we may assume ξ ∈M2n(Z) since the general case follows
by multiplying by a power of p. First, it is clear that ∪Γpαi ⊆ ΓpξΓp, and that the αi have
integer entries. Next, we see that the cosets Γpαi are disjoint since if not then αiα

−1
j ∈

Γp ∩ GL2n(Z[p−1]) ⊆ Γ. To show that the union is all of ΓpξΓp, we need only show that
ξΓp ⊆ ΓpξΓ, for then any element γ̃1ξγ̃2 = γ̃3ξγ (γ̃i ∈ Γp, γ ∈ Γ), so ξγ ∈ Γαi for some
i, hence γ̃1ξγ̃2 ∈ Γpαi. To see ξΓp ⊆ ΓpξΓ is really just a density argument: Let q = r(ξ)
be the similitude factor associated to ξ. Recall (see [1]) that there is a natural surjective
homomorphism Spn(R)→ Spn(R/qR) with R = Z or Zp. Denote by Γp(q) the kernel of the
homomorphism Spn(Zp)→ Spn(Zp/qZp). From Chapter 2, §3.3 of [1], we have that Γp(q) ⊂
Γp∩ξ−1Γpξ. Using the fact that Spn(Zp/qZp) ∼= Spn(Z/qZ) (and that Spn(Z)→ Spn(Z/qZ)
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is surjective), we may write Γp = ∪Γp(q)δi with the δi ∈ Γ. Let γ̃ ∈ Γp, and write γ̃ = γ̃0δk

for some γ̃0 ∈ Γp(q) and some k. Then

ξγ̃ = ξγ̃0δk = ξγ̃0δk(δ
−1
k ξ−1)ξδk = (ξγ̃0ξ

−1)ξδk ∈ ΓpξΓ

since ξγ̃0ξ
−1 ∈ ξΓp(q)ξ

−1 ⊂ ξ(Γp ∩ ξ−1Γpξ)ξ
−1 ⊂ Γp.

The integral Hecke algebra Hp is generated by the (n + 1) Hecke operators

T (p) = Γp

(
In 0
0 pIn

)
Γp

and for k = 1, . . . , n,

T n
k (p2) = Tk(p

2) = Γp




In−k 0 0 0
0 pIk 0 0
0 0 p2In−k 0
0 0 0 pIk


Γp,

while the Hecke algebra Hp is generated by the (n + 1) elements above together with the
element Tn(p2)−1 = (pI2n)−1.

The Satake isomorphism shows that the local Hecke algebra is isomorphic to a polynomial
ring invariant under a Weyl group:

Hp
∼= Q[x0, . . . , xn]Wn

Hp
∼= Q[x±1

0 , . . . , x±1
n ]Wn ∼= Q[x0, . . . , xn]Wn[(x2

0x1 · · ·xn)−1]

where Wn is the group of Q-automorphisms of the rational function field Q(x0, . . . , xn)
generated by all permutations of the variables x1, . . . , xn and by the automorphisms τ1, . . . , τn

which are given by:

τi(x0) = x0xi, τi(xi) = x−1
i , τi(xj) = xj (0 < j 6= i).

Wn is a signed permutation group, in particular, Wn = 〈τi〉oSn
∼= (Z/2Z)n oSn

∼= Cn where
Cn is Coxeter group associated to the spherical building for Spn(Qp).

2.2 Symplectic lattices and elementary divisors

Let E be the field Q or Qp, O its ring of integers, and (V, 〈∗, ∗〉) a 2n-dimensional symplectic
space over E. Fix a symplectic basis B = {u1, . . . , un, v1, . . . , vn} of V satisfying 〈ui, vj〉 = δij

(Kronecker delta), 〈ui, uj〉 = 〈vi, vj〉 = 0. Let Γ = Spn(O), and let G = GSpn(E) be the
group of symplectic similitudes with scalar factor r(M) ∈ E×. Note that Γ is a normal
subgroup of GSpn(E), being the kernel of the determinant map to E×.
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Notation 2.2. We shall have need of the notion of symplectic divisors (elementary divisors
with respect to the symplectic group). To that end, let S denote a set of representatives of
E×/O×. For E = Q, we let S = Q×

+, the positive rationals, while for E = Qp, we let
S = {pν | ν ∈ Z}. We will denote by GSpS

n(E) = {M ∈ GSpn(E) | r(M) ∈ S}, so when
E = Q, GSpS

n(E) is the classical GSp+
n (Q). It is worth noting that Spn(E) ⊂ GSpS

n(E).

With obvious modification to the proof, the following is Lemma 3.6 of [1].

Lemma 2.3. Let ξ ∈ GSpS
n(E), then every double coset ΓξΓ has a unique representative of

the form sd(ξ) = diag(d1, . . . , dn, e1, . . . , en) where di, ei ∈ S and di | di+1, dn | en, ei+1 | ei,
and diei = r(ξ)

We call a lattice symplectic if it has an O-basis which is a symplectic basis for V with
respect to the alternating bilinear form on V .

Proposition 2.4. Let L be a symplectic lattice. Then Γ = {A ∈ GSpS
n(E) | LA = L},

where the action of A on L is to be considered as the matrix of a linear transformation with
respect to a fixed basis of L.

Proof. Let Γ̃ = {A ∈ GSpS
n(E) | LA = L}. It is clear that Γ ⊂ Γ̃, so we need only

establish the other inclusion. Let A ∈ Γ̃. Since Γ̃ is a group, and Γ ⊂ Γ̃, any element
of the double coset ΓAΓ is also an element of Γ̃. By Lemma 2.3, we have that sd(A) =

diag(d1, . . . , dn; e1, . . . , en) ∈ Γ̃, where the di, ei ∈ S satisfy e1O ⊂ · · · ⊂ enO ⊂ dnO ⊂ · · · ⊂
d1O and eidi = r(A). It is trivial to see that the elementary divisors of Lsd(A) in L are
{L : Lsd(A)} = {d1, . . . , dn, e1, . . . en}. On the other hand, LA = L, so Lsd(A) = L and we
must have di = ei = 1 for all i. Thus ΓAΓ = Γ, so A ∈ Γ.

Fix a symplectic lattice L and put R = RL = {LA | A ∈ GSpS
n(E)}.

Lemma 2.5. Let M and N be lattices in R. Then there exists a symplectic basis
{u1, . . . , un, v1, . . . , vn} of V , and elements di, ei ∈ S satisfying e1O ⊂ · · · ⊂ enO ⊂ dnO ⊂

· · · ⊂ d1O and eidi = r ∈ S such that M =
n⊕

i=1

Oui ⊕
n⊕

i=1

Ovi and N =
n⊕

i=1

Odiui⊕
n⊕

i=1

Oeivi.

Remark 2.6. 1. Note that in the general linear case, GSpS
n would be replaced by GL+

2n,
and R would be the set of all lattices of full rank in V .

2. The ideals diO and ejO are called the symplectic divisors of N in M, and coincide
with the standard elementary divisors {M : N} since Γ ⊂ SL2n(O). That is, if we
choose two lattices from R and consider their elementary divisors in the traditional
sense, they are in fact symplectic elementary divisors with the additional properties
stated above. In particular, if M and N are as in the lemma, we will write {M :
N} = {d1, . . . , dn, e1, . . . , en} to mean there exist bases of M and N as in the lemma.
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Proof. SinceM and N are in R, there exists an A ∈ GSpS
n(E) with N =MA. Assume that

Γ is identified with the stabilizer ofM. By Lemma 2.3, sd(A) = diag(d1, . . . , dn, e1, . . . , en) =
γ1Aγ2 for some γi ∈ Γ, where sd(A) is the “symplectic divisor” matrix of A. Finally, it is
clear that since Mγi = M, that {M : N} = {Mγ1 : Mγ1A} = {Mγ1γ2 : Mγ1Aγ2} =
{M :Msd(A)} = {d1, . . . , dn, e1, . . . , en}, from which the lemma follows.

Lemma 2.7. For A and B in GSP S
n (E), ΓA = ΓB if and only if LA = LB.

Proof. ΓA = ΓB if and only if AB−1 ∈ Γ, which by Proposition 2.4 is true if and only if
L = LAB−1.

Lemma 2.8. Let M and N be lattices in R. The elementary divisors of M and N in L
satisfy {L :M} = {L : N} if and only if there exists an A ∈ Γ such that MA = N .

Proof. The result is clear if there exists an A ∈ Γ such thatMA = N . To prove the converse,
we note that by definition of the symplectic elementary divisors, there exist elements di,
ei ∈ S satisfying e1O ⊂ · · · ⊂ enO ⊂ dnO ⊂ · · · ⊂ d1O and eidi = r ∈ S and symplectic
O-bases

{u(j)
1 , . . . , u(j)

n ; v
(j)
1 , . . . , v(j)

n } (j = 1, 2)

of L such that

L =
n⊕

i=1

Ou
(1)
i ⊕

n⊕
i=1

Ov
(1)
i M =

n⊕
i=1

Odiu
(1)
i ⊕

n⊕
i=1

Oeiv
(1)
i

L =
n⊕

i=1

Ou
(2)
i ⊕

n⊕
i=1

Ov
(2)
i N =

n⊕
i=1

Odiu
(2)
i ⊕

n⊕
i=1

Oeiv
(2)
i

Let A be the matrix of the linear transformation (with respect to either basis) taking u
(1)
i 7→

u
(2)
i , and v

(1)
i 7→ v

(2)
i . Clearly A ∈ Spn(E) ⊂ GSpS

n(E) as it maps one symplectic basis to
another. Since LA = L, A ∈ Γ by Proposition 2.4 above. Since A obviously mapsM to N ,
the proof is complete.

Proposition 2.9. Let A ∈ GSpS
n(E), and

ΓAΓ = Γsd(A)Γ = Γ diag(d1, . . . , dn, e1, . . . , en)Γ.

Then Γξ 7→ Lξ gives a one-to-one correspondence between the cosets Γξ in ΓAΓ and lattices
M ∈ R with {L :M} = {d1, . . . , dn, e1, . . . en}.

Proof. We may assume that A = diag(d1, . . . , dn, e1, . . . , en). If Γξ = ΓAδ with δ ∈ Γ,
then Lξ ∈ R and we have {L : Lξ} = {L : LAδ} = {L : LA} = {d1, . . . , dn, e1, . . . en}.
Conversely, if M ∈ R and {L : M} = {d1, . . . , dn, e1, . . . en}, then by Lemma 2.8 there
exists an element B ∈ Γ such thatM = LAB. Clearly ΓAB ⊂ ΓAΓ. The correspondence is
one-to-one since by Lemma 2.7, Γξ = Γζ if and only if Lξ = Lζ.
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3 The Bruhat-Tits Building for Spn(Qp)

3.1 Lattices

The Bruhat-Tits building for Spn(Qp) is an n-dimensional simplicial complex whose vertices
are homothety classes of lattices in a fixed symplectic vector space V . One defines an
incidence relation on the vertices, and the resulting flag complex is the building. Generally
our interest will be in an apartment in the building for which we need a careful understanding
of how the vertices are indexed by classes of lattices, and later how the special vertices are
labeled by monomials in (n + 1) variables. Some of the basic material can be found in
Chapter 20 of [5]; we supplement where germane. Most of this can be done over any field
with a discrete valuation, so we temporarily adopt this more general setting.

Let K be a field with a discrete valuation, O the valuation ring, π a uniformizing pa-
rameter, and k = O/πO the residue field. Let (V, 〈∗, ∗〉) be a symplectic (non-degenerate
alternating) space of dimension 2n.

Definition 3.1. An O-lattice Λ is primitive if 〈Λ, Λ〉 ⊆ O and 〈∗, ∗〉 induces a non-
degenerate form on the alternating space Λ/πΛ over k.

We describe an apartment system for the building as follows. A frame is an unordered
n-tuple {λ1

1, λ
2
1}, . . . , {λ

1
n, λ2

n} of pairs of lines {λ1
i , λ

2
i } so that V =

∑n
1 (λ1

i + λ2
i ), (λ1

i + λ2
i )

is orthogonal to (λ1
j + λ2

j) for i 6= j, and each (λ1
i + λ2

i ) is a hyperbolic plane. We say
that the frame determines the apartment Σ. Vertices in Σ are homothety classes of lattices,
denoted [Λ]. A vertex [Λ] lies in Σ (determined by the above frame), if there are free O-
modules M j

i ⊂ λj
i so that Λ = ⊕i,jM

j
i for some (and hence every) representative Λ of the

homothety class. More concretely, vertices of the building are homothety classes of lattices
[Λ] which possess a representative Λ such that

There exists a lattice Λ0 with π−1Λ0 primitive,

Λ0 ⊆ Λ ⊆ π−1Λ0, and

〈Λ, Λ〉 ⊆ πO

or equivalently, Λ/Λ0 is a totally isotropic k-subspace of the non-degenerate alternating space
π−1Λ0/Λ0.

The maximal simplicies (chambers) are unordered (n + 1)-tuples [Λ0], [Λ1] . . . , [Λn] of
homothety classes of lattices with representatives Λi satisfying:

π−1Λ0 is primitive,

Λ0 ⊆ Λi ⊆ π−1Λ0, and

Λ1/Λ0 ⊂ Λ2/Λ0 ⊂ · · · ⊂ Λn/Λ0 is a maximal isotropic flags of k-subspaces in π−1Λ0/Λ0.

With respect to a fixed symplectic basis {e1, f1, . . . , en, fn} (〈ei, fi〉 = 1, 〈ei, ei〉 =
〈fi, fi〉 = 0), let Λ be the O-lattice Λ = Oπa1e1 ⊕ · · ·Oπanen ⊕ Oπb1f1 ⊕ · · · ⊕ Oπbnfn.
With the basis fixed, we often denote this lattice as (πa1 , . . . πan ; πb1, . . . , πbn).
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We note that 〈Λ, Λ〉 ⊆ O iff 〈πaiei, π
bifi〉 = πai+bi ∈ O which is true iff ai + bi ≥ 0. Given

ai + bi ≥ 0, the induced alternating form on Λ/πΛ is non-degenerate over k = O/πO iff
ai + bi = 0 for all i.

Example 3.2. Let {e1, . . . , en, f1, . . . , fn} be a symplectic basis for V (with 〈ei, fi〉 = 1),
and put λ1

i = Kei and λ2
i = Kfi. The frame {λ1

i , λ
2
i } defines an apartment Σ. Let Λ0 =

π(⊕Oei ⊕Ofi). Then π−1Λ0 is primitive. Denote by [πa1 , . . . , πan ; πb1 , . . . , πbn] the class of
the lattice Oπa1e1⊕· · ·⊕Oπanen⊕Oπb1f1⊕· · ·⊕Oπbnfn. Then the following flags determine
(fundamental) chambers in Σ.

[Λ0] = [π, . . . , π; π, . . . , π] ⊂ [Λ1] = [1, π, . . . , π; π, . . . , π] ⊂ [Λ2] = [1, 1, π, . . . , π; π, . . . , π] ⊂
· · · ⊂ [Λn] = [1, 1, . . . , 1; π, . . . , π].

[Λ0] = [π, . . . , π; π, . . . , π] ⊂ [Λ1] = [π, . . . , π; 1, π, . . . , π] ⊂ [Λ2] = [π, . . . , π; 1, 1, π . . . , π] ⊂
· · · ⊂ [Λn] = [π, . . . , π; 1, 1, . . . , 1].

Now to define the building, we start with the set of vertices S which is the set of homothety
classes of lattices defined above. We define an incidence relation of S as follows:

Let s, s′ ∈ S. We say s ∼ s′ if there are lattices Λs ∈ s and Λs′ ∈ s′ and a lattice Λ0

such that π−1Λ0 is primitive, Λ0 ⊆ Λs ⊆ π−1Λ0, πΛ0 ⊆ Λs′ ⊆ π−1Λ0, and either Λs ⊂ Λs′ or
Λs′ ⊂ Λs. The associated flag complex yields the building.

Remark 3.3. This definition is somewhat subtle. For example, consider the case n = 2.
Then it would appear if Λ0 = π(Oe1⊕Oe2⊕Of1⊕Of2) that any lattices Λs and Λs′ satisfying
πΛ0 ⊂ Λs′ ⊂ Λs ⊂ π−1Λ0 would give rise to incident vertices s and s′. One must be careful
to remember the definition of a vertex, in this case that there must exist an integer ν and
a lattice Λ1 with π−1Λ1 primitive and Λ1 ⊂ πνΛs′ ⊂ π−1Λ1 which eliminates some of the
possibilities.

Example 3.4. Consider the case n = 2, with Λ0 = π(Oe1⊕Oe2⊕Of1⊕Of2), and let [Λ0]
denote any special vertex in the apartment Σ (a vertex with the most hyperplanes through it)

We restrict our attention to the apartment Σ and hence to the frame determined by the
lines spanned by the ei and fi. As above, any vertex in Σ is the class of a lattice of the form
Oπa1e1 ⊕ · · · ⊕ Oπanen ⊕Oπb1f1 ⊕ · · · ⊕ Oπbnfn, denoted [πa1 , . . . , πan; πb1 , . . . , πbn].

For n = 2, we need to provide pairs of lattices Λ1 and Λ2 with Λ1/Λ0 ⊂ Λ2/Λ0 a maximal
isotropic flag in π−1Λ0/Λ0, so we only list the pairs of lattices Λ1 and Λ2.

Since Spn is of type Cn, the Weyl group is isomorphic to (Z/2Z)n o Sn (the signed
permutation group) and has order 2nn!, so for n = 2 we expect 8 chambers containing
the given vertex = [Λ0] = [1, 1, 1, 1] = [π, π, π, π]. The other pairs of vertices defining the
chambers are:

1. [1, π, π, π] ⊂ [1, 1, π, π]

2. [π, 1, π, π] ⊂ [1, 1, π, π]

3. [π, π, 1, π] ⊂ [π, π, 1, 1]
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4. [π, π, π, 1] ⊂ [π, π, 1, 1]

5. [1, π, π, π] ⊂ [1, π, π, 1]

6. [π, π, π, 1] ⊂ [1, π, π, 1]

7. [π, 1, π, π] ⊂ [π, 1, 1, π]

8. [π, π, 1, π] ⊂ [π, 1, 1, π]

To see how the rest of the apartment is laid out, one must understand the action of the
reflections which generate the Weyl group on the lattices. In this context (in contrast to
considering the residue of a vertex), we must contend with the affine Weyl group associated

to the Bruhat-Tits building for Spn(K). The affine Weyl group is of type C̃n which has
Coxeter diagram:

•1 •2 •3 •n−1 •n •n+1

with (n + 1) vertices, and the two endpoints being “special” vertices in the sense of [5]. The
Coxeter diagram for Cn is the same with the last special vertex (and associated “edge”)
deleted. Associated to each vertex i is a reflection si, and the reflections satisfy the standard
rules s2

i = 1, sisj has order mij indicated by the Coxeter diagram (m12 = mn(n+1) = 4,
mi(i+1) = 3, i 6= 1, n, and mij = 2 otherwise).

Acting on the symplectic basis {e1, . . . , en, f1, . . . , fn}, define the reflections (any basis
vector not specified is fixed):

• s1: Interchange e1 and f1

• sj (2 ≤ j ≤ n): Interchange ej−1 ↔ ej and fj−1 ↔ fj

• sn+1: en 7→ π−1fn, fn 7→ πen

That is, acting on a vertex [πa1 , . . . , πan ; πb1, . . . , πbn ],

• s1 takes [πa1 , . . . , πan; πb1 , . . . , πbn] to [πb1 , πa2 , . . . , πan; πa1 , πb2 . . . , πbn ]

• sj (2 ≤ j ≤ n): takes [πa1 , . . . , πan; πb1 , . . . , πbn] to
[πa1 , . . . , πaj−1 , πaj , . . . , πan; πb1 , . . . , πbj−1 , πbj , . . . , πbn]

• sn+1: takes [πa1 , . . . , πan ; πb1 , . . . , πbn ] to [πa1 , . . . , πan−1 , πbn+1; πb1 , . . . , πbn−1 , πan−1]

Now let’s proceed to label the apartment Σ. Label a special vertex v0 = [π, . . . , π; π, . . . , π],
and pick a fundamental chamber containing it. Label each of the codimension 1 faces in
the chamber containing the fixed vertex s1, . . . , sn. Label the remaining codimension 1 face
sn+1.
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Each chamber in the building contains two special vertices. In the case of the fundamental
chamber, one of them is the vertex v0 (fixed by the reflections s1, . . . , sn), and the other is
fixed by s2, . . . , sn+1. From above, we see that the vertex [πa1 , . . . , πan ; πb1, . . . , πbn ] is fixed
by sj (2 ≤ j ≤ n) iff aj−1 = aj and bj−1 = bj. The vertex is fixed by sn+1 iff an = bn + 1,
thus ai = bi + 1 for all i, and so the vertex [πa1 , . . . , πan ; πb1 , . . . , πbn ] = [π, . . . , π; 1, . . . , 1]
is the other special vertex in the fundamental chamber. Now using the reflections, we may
label the apartment.

Example 3.5. For Sp2(Qp) we have the following (partial) labeling of an apartment by
classes of lattices:

[p2, 1; 1, p2]

M
M

M
M

M
[p2, 1; 1; p] [p2, p; 1, p]

r
r

r
r

r

L
L

L
L

L
[p2, p; 1, 1] [p2, p2; 1, 1]

q
q

q
q

q

N
N

N
N

N
N

•

• [p, 1; 1, p]

q
q

q
q

q

L
L

L
L

L
L

[p, p; 1, p] [p, p; 1, 1]

r
r

r
r

r
r

M
M

M
M

M
[p, p2; 1, 1] [p2, p3; p, 1]

p
p

p
p

p
p

[p, 1; p, p2]

M
M

M
M

M
[p, 1; p, p] [p, p;p, p]

r
r

r
r

r
r

L
L

L
L

L
L

[p, p; p, 1] [p, p2; p, 1]

q
q

q
q

q

N
N

N
N

N
N

[p2, p3; p2, 1]

• [1, 1; p, p]

q
q

q
q

q
q

L
L

L
L

L
[1, p; p, p] [1, p; p, 1]

M
M

M
M

M

r
r

r
r

r
[1, p2; p, 1] [p, p3; p2, 1]

p
p

p
p

p
p

• [1, 1; p2, p] [1, p; p2, p] [1, p; p2, 1] [1, p2; p2, 1] •

Let Λ = Oπa1e1 ⊕ · · · ⊕ Oπanen ⊕Oπb1f1 ⊕ · · · ⊕ Oπbnfn. The dual lattice Λ] is defined
to be {v ∈ V | 〈v, Λ〉 ⊆ O}. It too is a lattice, and it it easily seen from the bilinearity of
the alternating form that Λ] = Oπ−b1e1 ⊕ · · · ⊕ Oπ−bnen ⊕ Oπ−a1f1 ⊕ · · · ⊕ Oπ−anfn. It is
also clear that (πνΛ)] = π−νΛ], so [Λ]] depends only on [Λ], and in particular [Λ] = [Λ]] iff
πµΛ] = Λ for some µ ∈ Z.

Proposition 3.6. Let Λ = Oπa1e1⊕· · ·⊕Oπanen⊕Oπb1f1⊕· · ·⊕Oπbnfn. Then [Λ] = [Λ]]
iff there exists an integer µ, so that for all i, ai + bi = µ. In this case we call the vertex
self-dual.

Proof. Using our explicit characterization of the dual lattice, [Λ] = [Λ]] iff there exists an
integer µ so that πµΛ] = Λ, that is iff πµπ−bi = πai and πµπ−ai = πbi which is iff µ = ai + bi

for all i.

Proposition 3.7. If Λ = Oπa1e1 ⊕ · · · ⊕ Oπanen ⊕ Oπb1f1 ⊕ · · · ⊕ Oπbnfn, and the vertex
[Λ] is self-dual, then it image under the Weyl group is again a self-dual lattice.

Proof. We need only check this for the generators of the Weyl group, the si, and all of these
are obvious from the definitions above.
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Remark 3.8. Actually we can say a little more about the action. The two special vertices
in our fundamental chamber ([π, . . . , π; π, . . . , π] and [π, . . . , π; 1, . . . , 1]) have the value of µ
equal (modulo 2) to 0 and 1 respectively. This value of µ is preserved by the action of the
Weyl group which acts transitively on the chambers in the apartment.

It is now also clear that the Weyl group acts transitively on the special vertices in the
apartment (in a “type”-preserving way).

3.2 Symmetric polynomials and Hecke Operators

Our goal is to define (n + 1) families of Hecke operators (analogous to the Tk(p
2), T (p))

whose generating series produce highly structured rational functions, and hence which are
arithmetically interesting. In two of the n + 1 cases, these rational functions correspond to
the spinor and standard zeta functions. In the other cases, they are new. In particular, in
no case except for T (p) have any generating series for Hecke operators been expressed as
rational functions.

We will make the definitions not in the Hecke algebra (defined by double cosets), but in
its representation space, the ring of Wn-invariant polynomials. Doing so will produce a corre-
spondence between the local Hecke algebra slightly different from the Satake correspondence,
but who generators are more arithmetically distinguished.

We first give a labeling of the special vertices in an apartment of the Bruhat-Tits building
for Spn(Qp) by monomials in Q[x±1

0 , . . . , x±1
n ] which corresponds in a natural way to symplec-

tic divisors of lattices. We recall that the Satake isomorphism gives us that the local rational
Hecke algebra is isomorphic to the ring of polynomials Q[x±1

0 , . . . , x±1
n ] which are invariant

under the Weyl group Wn. Actually, our labelling will be in Q[x±1
0 , . . . , x±1

n ]Wn modulo the re-
lation x2

0x1 · · ·xn = 1. Since Hp
∼= Q[x±1

0 , . . . , x±1
n ]Wn ∼= Q[x0, . . . , xn]Wn[(x2

0x1 · · ·xn)−1] (see
[1]), reducing by the relation x2

0x1 · · ·xn = 1 produces a subring of Q[x0, x1, . . . , xn]Wn ∼= Hp,
the integral local Hecke algebra. Specifically, we are defining a representation of the local
Hecke algebra in the polynomial ring in which double cosets ΓpνI2nΓ act trivially. This is
essentially the case when Hecke operators act on automorphic forms. One should also recall
that it is only the invertibility of ΓpI2nΓ which distinguishes Hp for Hp.

Fix a (fundamental) apartment Σ in the building by means of a frame and symplectic
basis {e1, . . . , en, f1, . . . , fn} as in the previous section. Let [Λ0] be the class of the lattice
Λ0 = Zpe1 ⊕ · · · ⊕ Zpen⊕ Zpf1⊕ · · · ⊕ Zpfn, labeling a fixed special vertex in the apartment
Σ. From the previous section, we saw that a typical vertex [Λ] in Σ is special iff the vertex
is self-dual, that is Λ = Zpp

a1e1 ⊕ · · · ⊕ Zpp
anen ⊕ Zpp

b1f1 ⊕ · · · ⊕ Zpp
bnfn for which there

is an integer µ with µ = ai + bi for all i. With this notation, we now have a one-to-one
correspondence between the classes of lattices (labeling special vertices), and monomials in
Q[x±1

0 , . . . , x±1
n ]:

[pa1 , . . . , pan ; pb1 , . . . , pbn ]←→ xµ
0x

a1
1 · · ·x

an

n

modulo the relation x2
0x1 · · ·xn = 1 which corresponds to the class [p, . . . , p; p, . . . , p] = [Λ0].

That is, if Λ is replaced by pcΛ, xµ
0x

a1
1 · · ·x

an
n is replaced by (x2

0x1 · · ·xn)cxµ
0x

a1
1 · · ·x

an
n ,
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so that classes of lattices correspond to classes of monomials. To keep the notation
from getting too involved, we will simply write xµ

0x
a1
1 · · ·x

an
n rather than something like

[xµ
0x

a1
1 · · ·x

an
n ]. This avoids obvious confusion in statements like Q[x±1

0 , . . . , x±1
n ]Wn =

Q[x0, . . . , xn]Wn [(x2
0x1 · · ·xn)−1].

Remark 3.9. We also note one more important property of this labelling. Any special vertex
v = [pa1 , . . . , pan ; pb1, . . . , pbn ] in the apartment can be viewed as an element of GSp+

n (Q) via
v ↔ diag(pa1 , . . . , pan , pb1, . . . , pbn). As such, there is a natural multiplication of the vertices.
If (with v as above), we denote xµ

0x
a1
1 · · ·x

an
n by xv, then we have the simple rule xvxv′ = xvv′ .

We will have need of this observation in the next section.

We take a moment to foreshadow a bit. While the Satake isomorphism provides a cor-
respondence between the local Hecke algebra and the polynomial ring, the correspondence
does not appear at all obvious. On the other hand, with the given notation, there is an
obvious correspondence (though not completely correct as yet) with the local Hecke algebra:
Given, [pa1 , . . . , pan ; pb1, . . . , pbn ]←→ xµ

0x
a1
1 · · ·x

an
n with µ = ai+bi, we immediately note that

diag(pa1 , . . . , pan ; pb1 , . . . , pbn) ∈ GSp+
n (Q), so that Γn diag(pa1 , . . . , pan ; pb1 , . . . , pbn)Γn is in

the local Hecke algebra Hp. Thus there is a clear connection between the Hecke operator
Γn diag(pa1 , . . . , pan; pb1 , . . . , pbn)Γn and the monomial xµ

0x
a1
1 · · ·x

an
n which we will turn into

a valid representation.

Before proceeding to develop the representation, we provide a labeling of a piece of the
apartment Σ for Sp2, corresponding to our previous labelling by classes of lattices:

Example 3.10. A partial labeling of the special vertices in an apartment for Sp2(Qp) by
monomials

x1x
−1
2

G
G

G
G

G
• x1

z
z

z
z

z

G
G

G
G

G
• x1x2

u
u

u
u

u
u

I
I

I
I

I
•

• x0x1

w
w

w
w

w

D
D

D
D

D
• x0x1x2

w
w

w
w

w
w

I
I

I
I

I
I

• x0x1x
2
2

u
u

u
u

u

x−1
2

G
G

G
G

G
• 1

z
z

z
z

z

G
G

G
G

G
G • x2

u
u

u
u

u
u

I
I

I
I

I •

• x0

w
w

w
w

w

D
D

D
D

D
• x0x2

I
I

I
I

I

w
w

w
w

w
• x0x

2
2

u
u

u
u

u

x2
0 • x−1

1 • x−1
1 x2 •

Remark 3.11. We note that if we think of each monomial as acting on the vertex 1 as
a motion (e.g. x2 represents motion two vertices “to the right”), then multiplication by
monomials is consistent with this action (e.g., x1x2 is two vertices to the right of x1).
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The motivation behind the definition of the new Hecke operators comes from several
sources. On the one hand, Hecke operators, thought of as double cosets, have an action on
automorphic forms defined in terms of a “sum” of their right cosets, which by Proposition 2.9
corresponds to a sum of (classes of) lattices with prescribed symplectic divisors.

On the other hand, Hecke operators (via the Satake isomorphism) correspond to Wn-
invariant polynomials which correspond to sums of vertices in the building. In fact, we
are really thinking only of the underlying graph and not worrying about the full simplicial
structure the building embodies. That said, natural operators on graphs are adjacency
operators (a sum of certain neighboring vertices), so combining these ideas, we are led in
the following direction: A Hecke operator should be a sum of monomials (corresponding to
lattices) which are invariant under Wn.

To define our Hecke operators in the context of this polynomial ring we need a definition

and simple lemma: For a nonnegative integer `, define hr(`) =
∑
∑

jk=`
jk≥0

zj1
1 zj2

2 · · · z
jr

r . Note that

hr(`) is a symmetric polynomial in the r variables z1, . . . , zr, and in particular, hr(0) = 1
and hr(1) = z1 + · · ·+ zr.

Proposition 3.12. The generating series associated to the hr(`) satisfies

∑

`≥0

hr(`)u` = [(1− uz1) · · · (1− uzr)]
−1

Proof. This is essentially obvious:

[(1− uz1) · · · (1− uzr)]
−1 =

(
∑

a1≥0

(uz1)
a1

)
· · ·

(
∑

ar≥0

(uzr)
ar

)

=
∑

`≥0

u` ·
[ ∑
∑

ai=`
ai≥0

za1
1 · · · z

ar

r

]

It is clear from the definitions above that the coefficient of u` in the given expression is
hr(`).

Next we need to use the above polynomial to create a Wn-invariant polynomial. The
simplest examples are simply to fix a monomial and to sum its images under the action of
Wn. To that end, we compute a few simple orbits.

Lemma 3.13. Under the action of Wn, we obtain the following orbits:

1. OrbitWn
(x0) = {x0x

ε1
1 · · ·x

εn
n | εi = 0, 1}.

2. OrbitWn
(x1 · · ·xk) = {x

δi1
i1
· · ·x

δik

ik
| 1 ≤ i1 ≤ · · · ≤ ik ≤ n, δij = ±1}.
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In particular, the orbits have size 2n and 2k
(

n
k

)
respectively.

Proof. Recall that Wn is the group of Q-automorphisms of the rational function field
Q(x0, . . . , xn) generated by all permutations of the variables x1, . . . , xn and by the automor-
phisms τ1, . . . , τn which are given by:

τi(x0) = x0xi, τi(xi) = x−1
i , τi(xj) = xj (0 < j 6= i).

In particular, Wn = 〈τi〉 o Sn
∼= (Z/2Z)n o Sn. Since τks

τks−1 · · · τk1(x0) = x0xk1 · · ·xks
for

distinct kj ≥ 1, it is clear that OrbitWn
(x0) ⊇ {x0x

ε1
1 · · ·x

εn
n | εi = 0, 1}, and so the orbit has

cardinality at least 2n. On the other hand, all of Sn is contained in the stabilizer of x0, so
the size of the orbit is [Wn : Stab(x0)] ≤ [Wn : Sn] = 2n, which gives the first result.

For the second, it is easy to see directly: Sn can take x1 · · ·xk to any monomial xi1 · · ·xik

with 1 ≤ i1 ≤ · · · ≤ ik ≤ n. Applying τij takes xij to x−1
ij

fixing all other indices. Since these
generate the group Wn, the orbit and its size are clear.

With these orbits determined, the following definitions become less mysterious. We start
with hr(`) where r is the size of one of the above orbits and substitute for the variables zi

the elements in the orbit. Thus we define the families of Hecke operators:

tn0 (p`) = h2n

(`)
∣∣∣ zi 7→σi(x0)
σi∈Wn/ Stab(x0)

.

and for 1 ≤ k ≤ n,

tnk(p`) = h2k(n
k)(`)

∣∣∣ zi 7→σi(x1···xk)
σi∈Wn/ Stab(x1···xk)

.

In particular,

tn0 (p) =
∑

εi=0,1

x0x
ε1
1 · · ·x

εn

n . (2n summands)

and

tnk(p) =
∑

1≤i1<···<ik≤n
δij

=±1

x
δi1
i1
· · ·x

δik

ik
. (2k

(
n

k

)
summands)

Here once again, we are suppressing the fact that we are looking at classes of monomials,
and that really we have defined (for example)

tn0 (p) =
∑

εi=0,1

[x0x
ε1
1 · · ·x

εn

n ].

Since x2
0x1 · · ·xn is fixed by every element of Wn, these operators are well-defined.
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Remark 3.14. We want to make clear the naturalness of these operators as well as their
significance. As alluded to above, tj(p) represents an adjacency operator. To see this observe,
consider the case n = 2 and the apartments labeled in diagrams in Examples 3.5 and 3.10.

t0(p) = x0 + x0x1 + x0x2 + x0x1x2 = [1, 1; p, p] + [p, 1; 1, p] + [1, p; p, 1] + [p, p; 1, 1]

t1(p) = x1 + x−1
1 + x2 + x−1

2 = [p2, p; 1, p] + [1, p; p2, p] + [p, p2; p, 1] + [p, 1, ; p, p2]

t2(p) = x1x2 + x1x
−1
2 + x−1

1 x2 + x−1
1 x−1

2 = [p2, p2; 1, 1] + [p2, 1; 1, p2] + [1, p2; p2, 1] + [1, 1; p2, p2]

Thus at least restricted to the apartment we have the following natural correspondences:

t0(p) =
∑

ΓMΓ=Γ diag(1,1;p,p)Γ

[M ]←→ T (p)

t1(p) =
∑

ΓMΓ=Γ diag(1,p;p2,p)Γ

[M ]←→ T1(p
2)

and in general tk(p)←→ T n
n−k(p

2) for 1 ≤ k < n (Tn(p2)←→ x2
0x1 · · ·xn).

To see the significance of these operators we need to provide a little background. Recall
that associated to a simultaneous Hecke eigenfunction F of weight k for Spn(Z) are the Satake
p-parameters (α0, . . . , αn) = (α0(p), . . . , αn(p)) ∈ Cn+1/Wn for each prime p, generalizing the
Hecke eigenvalues. The Satake parameters satisfy α0(p)2α1(p) · · ·αn(p) = pnk−n(n+1)/2 and
are used to define the spinor and standard zeta functions.

The standard zeta function is defined by DF (s) =
∏

p DF,p(p
−s)−1 (<(s) > 1), where

DF,p(v) = (1− v)
n∏

m=1

(1− αmv)(1− α−1
m v),

while the spinor zeta function is defined by ZF (s) =
∏

p ZF,p(p
−s)−1 (<(s) > nk/2− n(n +

1)/4 + 1), where

ZF,p(v) = (1− α0v)
n∏

m=1

∏

1≤i1<···<im≤n

(1− α0αi1 · · ·αimv).

For Sp2, Andrianov and Zhuravlev [1] define a family of Hecke operators T 2(p`) whose
images under the (Satake) spherical map Ω (from Hp to Q[x±1

0 , x±1
1 , x±1

2 ]W2) satisfy

∑

`≥0

Ω(T 2(p`))v` =
(1− p−1x2

0x1x2v
2)

(1− x0v)(1− x0x1v)(1− x0x2v)(1− x0x1x2v)
,
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the denominator of which is essentially that of the spinor zeta function for Sp2:

ZF (s) =
∏

ZF,p(p
−s)−1, where ZF,p(v) = (1−α0v)(1−α0α1v)(1−α0α2v)(1−α0α1α2v).

We have taken the opposite perspective here. We have defined interesting operators in the
polynomial ring and will determine what they correspond to in the Hecke algebra.

Proposition 3.15. The operators t0(p
`) and tk(p

`) have a generating series which is a
rational function:

∑

`≥0

tn0 (p`)v` =

[
(1− x0v)

n∏

m=1

∏

1≤i1<···<im≤n

(1− x0xi1 · · ·ximv)

]−1

which clearly corresponds to the local factor of the spinor zeta function, and

∑

`≥0

tnk(p`)v` =




∏

1≤i1<···<ik≤n, δij
=±1

(1− x
δi1
i1
· · ·x

δik

ik
v)



−1

which, when k = 1, is simply
∑

`≥0

tn1 (p`)v` =

[
n∏

m=1

(1− xmv)(1− x−1
m v)

]−1

which in turn (up

to an initial “zeta” factor) corresponds to the local factor of the standard zeta function:

DF,p(v) = (1− v)

n∏

m=1

(1− αmv)(1− α−1
m v).

Proof. The proof is immediate from Proposition 3.12 and the computation of orbits in
Lemma 3.13.

Remark 3.16. Except for k = 0 and k = 1, these are new Hecke operators whose generating
series are rational functions which likely correspond to new zeta functions which can be
studied in the context of Siegel modular forms.

We note that for the case of n = 2, the operator t0(p
`) has a generating function with the

same denominator as Ω(T 2(p`)), but with numerator 1.

4 Connections with the global Hecke algebra

Recall that we have fixed a 2n-dimensional symplectic space (V, 〈∗, ∗〉) over Q. Let ∆n

the Bruhat-Tits building for Spn(Qp). Then the vertices of the building, Vert(∆n), are in
one-to-one correspondence with homothety classes of lattices in V . Let B be the rational
vector space with basis Vert(∆n). In this section, we define two natural (essentially) faithful
representations of the local Hecke algebra Hp, and a connecting homomorphism which adds
the necessary structure to our intuitive definitions given earlier. We will produce the following
commutative diagram of algebra homomorphisms.
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Hp

Ψ
**TTTTTTTTTTTTTTTTTTTT

Φ
// Q[x±1

0 , x±1
1 , . . . , x±1

n ]Wn

ρ

��

End(B)

4.1 An action of the Hecke algebra on the building

For ξ ∈ GSp+
n (Q), any double coset ΓξΓ can be represented by a diagonal element, so

we assume that henceforth. For ξ = diag(pa1 , . . . , pan; pb1 , . . . , pbn) ∈ GSp+
n (Q), we have

that the double coset ΓξΓ determines a collection of right cosets {Γξν} which by Propo-
sition 2.9 are in one-to-one correspondence with the collection of lattices {M} with {L :
M} = {pa1 , . . . , pan ; pb1 , . . . , pbn}. Using this identification, it is natural to define the opera-
tor TB(pa1 , . . . , pan ; pb1 , . . . , pbn) ∈ End(B) induced by:

TB(pa1 , . . . , pan; pb1 , . . . , pbn)([L]) =
∑

{L:M}={pa1 ,...,pan ;pb1 ,...,pbn}

[M ]

where the sum is over all vertices in the building with prescibed “elementary divisors”.

For brevity, we shall often simply write TB(ξ)([L]) =
∑

{L:M}=ξ[M ]. The map is clearly

well-defined and (by definition) linear.

In the usual notation, let ξ1 = diag(pa1 , . . . , pan , pb1, . . . , pbn), ξ2 = diag(pc1, . . . , pcn, pd1 , . . . , pdn)
be elements of GSp+

n (Q) and write Γξ1Γ as the disjoint union ∪Γαi, and write Γξ2Γ as the
disjoint union ∪Γβj. In the Hecke algebra Hp, the multiplication law is defined by (e.g., see
section 3.1 of [6]):

(Γξ1Γ)(Γξ2Γ) = Γξ1Γξ2Γ =
∑

i,j

Γαiβj

where the right cosets are not necessarily distinct. More precisely,

(Γξ1Γ)(Γξ2Γ) =
∑

i,j

Γαiβj =
∑

ΓξΓ

c(ξ)ΓξΓ

where the sum is over all double cosets ΓξΓ ⊂ Γξ1Γξ2Γ, and where c(ξ) is the number of
pairs (i, j) for which Γαiβj = Γξ.

Theorem 4.1. The correspondence ΓξΓ 7→ TB(ξ) induces a representation Ψ : Hp →
End(B), whose kernel consists of double cosets of the form ΓξΓ with ξ = pµI2n, µ ∈ Z.

Proof. We first verify that Ψ is a ring homomorphism. Using the notation above, we have
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TB(ξ1)TB(ξ2)([L]) = TB(ξ1)(
∑

{L:M}=ξ2

[M ])

=
∑

{L:M}=ξ2

∑

{M :N}=ξ1

[N ]

By Proposition 2.9, each lattice M for which {L : M} = ξ2 is of the form M = Lβj. Now

{M : N} = ξ1 ⇐⇒ {Lβj : N} = ξ1 ⇐⇒ {L : Nβ−1
j } = ξ1

Now let P be such that {L : P} = ξ1. Then again by Proposition 2.9, P = Lαi for some
i. But then P = Nβ−1

j , so N = Pβj = Lαiβj.

Thus, TB(ξ1)TB(ξ2)([L]) =
∑

{L:M}=ξ2

∑

{M :N}=ξ1

[N ] =
∑

i,j

[Lαiβj]. From the discus-

sion preceding the theorem (and once again Proposition 2.9), this last sum is exactly∑
ΓξΓ c(ξ)TB(ξ)([L]) which is the image of (Γξ1Γ)(Γξ2Γ).

To compute the kernel of Ψ, suppose
∑

ΓξΓ c(ξ)TB(ξ) is the trivial map. Then
∑

ΓξΓ

c(ξ)TB(ξ)([L]) =
∑

ΓξΓ

c(ξ)
∑

{L:M}=ξ

[M ] = [L]

for all vertices [L] ∈ Vert(∆n). But the elements [M ] ∈ Vert(∆n) are a basis for B, we have
all the only one ξ, and for that ξ, c(ξ) = 1. Thus we have

∑
{L:M}=ξ[M ] = [L] for all [L].

Now if ΓξΓ = ∪ξν, then by proposition 2.9,
∑

{L:M}=ξ[M ] =
∑

ν[Lξν] = [L], so there can be

only one right coset: ΓξΓ = Γξ, and [Lξ] = [L]. Since {L : Lξ} = ξ, we must have ξ = pµI2n

for some integer µ.

Now to define the representation Φ : Hp → Q[x±1
0 , x±1

1 , . . . , x±1
n ]Wn , we begin by defining

certain symmetric polynomials. As before, let ξ = diag(pa1 , . . . , pan , pb1 , . . . , pbn) ∈ GSp+
n (Q).

Recall this means there is an integer µ so that µ = ai + bi for all i. Define t(ξ) to be the
sum of the images of (xµ

0x
a1
1 · · ·x

an
n ) under the action of the (spherical Weyl) group Wn. We

denote this as

t(ξ) =
∑

w∈Wn

(xµ
0x

a1
1 · · ·x

an

n )w

Once again, we remind the reader that this sum is really over the classes of monomi-
als xµ

0x
a1
1 · · ·x

an
n (modulo x2

0x1 · · ·xn = 1) under the action of the Weyl group Wn. Since
x2

0x1 · · ·xn is fixed by all elements of Wn, this definition is well-defined.

Loosely, speaking Φ should map ΓξΓ to a multiple of t(ξ). The key to defining this
homomorphism is the following identification. We know that Wn

∼= Cn is simply signed a
permutation group (permuting the n pairs of lines defining a frame), and so can be identified
with a subgroup of Γ (see 10.1 of [3]).
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Remark 4.1. The isomorphism Wn
∼= Cn can be seen quite explicitly if we identify the

generators of the affine Weyl group Cn with generators of Wn. In the previous section, we
wrote down reflections sj which generated the Weyl groups: s1, . . . , sn generate the spherical

Weyl group Cn, while s1, . . . , sn+1 generate the affine Weyl group C̃n.

The group Wn is generated by the τi and the permutations in the symmetric group Sn.
With obvious identifications, we see that τj = (i j)τi(i j) and since Sn is generated by the
transpositions {(1 2), (2 3), . . . , (n − 1 n)}, Wn = 〈τ1, (1 2), (2 3), . . . , (n − 1 n)〉. One
identifies τ1 with s1, and (j − 1 j) with sj (2 ≤ j ≤ n) and verifies they satisfy the same
Coxeter relations as the si, and so satisfy the deletion condition, which by Tit’s theorem (see
Chapter 1 of [3]) gives a Coxeter system.

By definition,

TB(ξ)([L]) =
∑

γν∈(ξ−1Γξ∩Γ)\Γ

[Lξγν]

So identifying Wn with a subgroup of Γ, we may write Γ as a union of double cosets:
Γ = ∪(ξ−1Γξ ∩ Γ)δµWn, so the expression above becomes

TB(ξ)([L]) =
∑

δµ∈(ξ−1Γξ∩Γ)\Γ/Wn

∑

w∈Wn

[Lξδµw]

Given that Wn acts invariantly on any given apartment, we see that for a fixed µ, the
collection of vertices [Lξδµw] as w runs over Wn consists (with multiplicity [Wn : Stab(Lξδµ)])
of all the vertices [M ] in a given apartment with {L : M} = ξ. Moreover, since every
apartment in the building is isomorphic (with structure determined by the Coxeter group

C̃n), all of the multiplicities [Wn : Stab(Lξδµ)] are the same, independent of µ.

From the remark above it is now clear that after an appropriate change of frame (in
particular a change of a basis), t(ξ) =

∑
w∈Wn

(xµ
0x

a1
1 · · ·x

an
n )w can be naturally identified

with summand
∑

w∈Wn
[Lξδµw] occuring in

TB(ξ)([L]) =
∑

δµ∈(ξ−1Γξ∩Γ)\Γ/Wn

∑

w∈Wn

[Lξδµw]

If we define η(ξ) = #(ξ−1Γξ ∩ Γ)\Γ/Wn, we can identify TB(ξ) with η(ξ)t(ξ), thus we
define Φ(ΓξΓ) = η(ξ)t(ξ).

To define the connecting homomorphism ρ : Q[x±1
0 , x±1

1 , . . . , x±1
n ]Wn → End(B), we ob-

serve that any polynomial p ∈ Q[x±1
0 , x±1

1 , . . . , x±1
n ]Wn, can be written as a sum

∑
ξ c(ξ)t(ξ)

where the ξ are a set of representatives of the monomials occuring in p modulo Wn, so we
only have to define ρ on a basis. We define ρ(t(ξ)) = η(ξ)−1TB(ξ), so that ρ ◦ Φ = Ψ.

To prove that Φ is a ring homomorphism, it is convenient to think of Φ as the restriction
to Hp of a linear map Φ : L(Γ, G) → Q[x±1

0 , x±1
1 , . . . , x±1

n ]Wn. Recall that in this setting we
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view the double coset ΓξΓ as the sum of right cosets
∑

Γξν (ΓξΓ = ∪Γξν) which is right
invariant under Γ. While the map Φ (with domain L(Γ, G)) will only be a vector space
homomorphism, its restriction to Hp will be a ring homomorphism.

What we have said above is that we want Φ to take ΓξΓ to η(ξ)t(ξ) so that there are as
many monomials (counting multiplicities) as right cosets ΓξΓ = ∪Γξν. Since any right coset
Γξν determines the same double coset, we must map any right coset to the same polynomial.
From this, the definition is clear: Φ(Γξν) = |Wn|−1

∑
w∈Wn

(xξw). Then extending linearly
yields the desired Φ(ΓξΓ) = η(ξ)t(ξ).

Theorem 4.2. The correspondence ΓξΓ 7→ η(ξ)t(ξ) is a surjective homomorphism Φ : Hp →
Q[x±1

0 , x±1
1 , . . . , x±1

n ]Wn, whose kernel consists of double cosets of the form ΓξΓ with ξ = pµI2n,
µ ∈ Z.

Proof. First note that since Q[x±1
0 , x±1

1 , . . . , x±1
n ]Wn = Q[x0, . . . , xn]Wn [(x2

0x1 · · ·xn)−1] (and
we are working modulo x2

0x1 · · ·xn = 1), the codomain is spanned as a vector space by
elements of the form t(ξ), from which the surjectivity is immediate. Let ΓαΓ, ΓβΓ ∈ Hp,
and write (as a disjoint union)

ΓαΓ =
⋃

αi∈(α−1Γα∩Γ)\Γ/Wn

⋃

w∈Wn

Γααiw and

ΓβΓ =
⋃

βj∈(β−1Γβ∩Γ)\Γ/Wn

⋃

w′∈Wn

Γββjw
′.

Without loss of generality, we are assuming that α and β are diagonal. Then in Hp,
(ΓαΓ)(ΓβΓ) =

∑
i,j Γααiwββjw

′ =
∑

ξ c(ξ)ΓξΓ. Our first task is to determine the ξ which
can occur. Since βj, w

′ ∈ Γ, it is clear that Γααiwββjw
′Γ = ΓααiwβΓ, however it it also

true that ΓααiwβΓ = ΓαwβΓ. To see the latter we deal with symplectic elementary divisors
(Lemma 2.3). Recall that elementary divisors {L : Lξ} are uniquely determined by the
double coset ΓξΓ. We have that

{L : Lααiwβ} = {Lβ−1w−1 : Lααi},

and we note that L = Lαi = Lα−1
i since αi ∈ Γ. Moreover, α−1

i ααi and α are simply two
matrix representations of the same linear transformation acting on L. Thus

{L : Lααiwβ} = {Lβ−1w−1 : Lα−1
i ααi} = {Lβ−1w−1 : Lα} = {L : Lαwβ}

Thus (ΓαΓ)(ΓβΓ) =
∑

w∈Wn
d(w)ΓαwβΓ (where the double cosets may not be distinct).

Here d(w) is easily computed from the above observations:

d(w) deg(Γαwβ) = η(α)η(β)|Wn|,

where deg(Γαwβ) is the number of right cosets in the double coset, that is, deg(ΓξΓ) =
# (ξ−1Γξ ∩ Γ) \Γ.
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It follows that

Φ ((ΓαΓ)(ΓβΓ)) =
∑

w

d(w)η(αwβ)t(αwβ)

=
∑

w

η(α)η(β)|Wn|(deg(ΓαwβΓ))−1η(αwβ)t(αwβ)

= η(α)η(β)
∑

w

t(αwβ).

We note that since α and β are diagonal and w is a “signed” permutation, the product αwβ
is diagonal so that t(αwβ) does indeed make sense. On the other hand

Φ(ΓαΓ)Φ(ΓβΓ) = η(α)η(β)t(α)t(β)

= η(α)η(β)(
∑

w

xαw)(
∑

w′

xβw′

)

= η(α)η(β)(
∑

w

∑

w′

xαwβw′

) (see remark 3.9)

= η(α)η(β)
∑

w

(
∑

w′

x(αwβ)w′

)

= η(α)η(β)
∑

w

t(αwβ)

Thus Φ is a ring homomorphism. To compute its kernel, suppose that Φ(
∑

ξ c(ξ)ΓξΓ) =∑
ξ c(ξ)η(ξ)t(ξ) is trivial, that is to say (as polynomials)

∑

ξ

c(ξ)η(ξ)
∑

w∈Wn

xξw = (x2
0x1 · · ·xn)` for some integer `

From this we immediately infer that there can only be one ξ and that xξ = xξw for all w ∈ Wn.
It is trivial to check that if ξ corresponds to the class of the lattice [pa1 , . . . , pan ; pb1 , . . . , pbn ]
with µ = ai+bi for all i, then the monomial xξ = xµ

0x
a1
1 · · ·x

an
n is fixed by all elements of Wn iff

xξ = (x2
0x1 · · ·xn)` for some integer `. Then

∑
ξ c(ξ)η(ξ)

∑
w∈Wn

xξw = c(ξ)η(ξ)|Wn|xξ = xξ

and ξ = p`I2n. Since deg(Γp`I2nΓ) = 1, η(ξ) = |Wn|−1, so c(ξ) = 1 which establishes the
result.

Remark 4.2. The image under Φ of ΓpIΓ is (the class of) is x2
0x1 · · ·xn. For comparison,

one should note that for a simultaneous Hecke eigenform of weight k for Γ = Γn, the associ-
ated Satake p-parameters (α0, α1, . . . , αn) ∈ Cn+1/Wn satisfy α2

0α1 · · ·αn = pnk−n(n+1)/2, and
also that under the Satake isomorphism (Andrianov’s spherical map Ω), the image of ΓpIΓ
is p−n(n+1)/2x2

0x1 · · ·xn.

Corollary 4.3. The connecting map ρ : Q[x±1
0 , . . . , x−1

n ]Wn → End(B) defined by ρ(t(ξ)) =
η(ξ)−1TB(ξ) is an injective ring homomorphism. satisfying ρ ◦ Φ = Ψ.

Proof. Both Φ and Ψ have the same kernel K, so induce injective homomorphisms from
Φ̃ : Hp/K → Q[x±1

0 , . . . , x−1
n ]Wn, and Ψ̃ : Hp/K → End(B). Since, Φ and hence Φ̃ is

surjective, ρ = Ψ̃ ◦ Φ̃−1 has the desired properties.
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Remark 4.4. We remark that while closely related, there is a difference between the spherical
map Ω defined by Andrianov [1] and our map Φ.

Let ξ0 =

(
I2 0
0 pI2

)
and ξk =




In−k 0 0 0
0 pIk 0 0
0 0 p2In−k 0
0 0 0 pIk


, 1 ≤ k ≤ n. By Lemma 3.13,

t(ξ0) =
∑

w∈Wn

xξ0w = |Wn|[Wn : Stab(x0)]
−1
∑

εi=0,1

x0x
ε1
1 · · ·x

εn

n =
|Wn|

2n
t0(p),

so that

Φ(T (p)) = η(ξ0)t(ξ0) =
deg(ξ0)

|Wn|

|Wn|

2n

∑

εi=0,1

x0x
ε1
1 · · ·x

εn

n =
deg(ξ0)

2n
Ω(T (p)) =

deg(ξ0)

2n
t0(p).

As mentioned earlier for 1 ≤ k < n, Tn−k(p
2) corresponds to tk(p), so we have

t(ξk) =
∑

w∈Wn

xξkw = |Wn|[Wn : Stab(ξk)]
−1

∑

1≤i1≤···≤ik≤n, δij
=±1

x
δi1
i1
· · ·x

δik

ik
=
|Wn|

2k
(

n
k

)tk(p),

so that

Φ(Tn−k(p
2)) = η(ξk)t(ξk) =

deg(ξk)

|Wn|

|Wn|

2k
(

n
k

)tk(p) =
deg(ξk)

2k
(

n
k

) tk(p)

Computations with the spherical map are far less trivial. For comparison purposes we
compute Ω(T 2

1 (p2)). We have already shown that

Φ(T 2
1 (p2)) =

deg(ξ1)

4
t1(p) =

deg(ξ1)

4
(x1 + x−1

1 + x2 + x−1
2 )

while
Ω(T 2

2 (p2)) = Ω(pI4) = p−3x2
0x1x2

and

Ω(T 2
1 (p2)) = p−1(x2

0x1 + x2
0x2 + x2

0x
2
1x2 + x2

0x1x
2
2) + p−2(p2 − 1)(x2

0x1x2)

= (x2
0x1x2)[p

−1(x1 + x−1
1 + x2 + x−1

2 ) + p−2(p2 − 1)]

= (x2
0x1x2)[p

−1t1(p) + p−2(p2 − 1)]

= Ω(T 2
2 (p2))[p2t1(p) + (p2 − 1)]

So it is clear that the action of Ω is somewhat more complicated, intertwining the Hecke
operators in comparison to the action of Φ.
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