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Abstract. Let B be a central simple algebra of degree n over a number field K, and
let L/K be a field extension of degree n which embeds in B. The question of which of
the isomorphism classes of maximal orders in B admit an embedding of an OK -suborder
Ω of OL is the question of selectivity of the order Ω. In this paper we are concerned with
algebras of degree n ≥ 3, and continue the work of several authors to characterize the degree
to which and conditions under which selectivity will occur. We take a local approach via the
theory of affine buildings which provides explicit information about the structure of local
embeddings, and leverage that information to produce a global characterization. We clarify
that selectivity can never occur in an algebra which is a division algebra at a finite prime
as well as construct representatives of the isomorphism classes of maximal orders which do
admit embeddings of Ω. An example of selectivity in an algebra with partial ramification is
provided.

1. Introduction

Let K be a number field and B a central simple K-algebra. For each prime ν of K
the Wedderburn structure theorem implies that there is an isomorphism of local algebras
Bν = B⊗K Kν

∼= Mκν
(Dν), where Dν is a central simple division algebra over Kν with index

mν . The Albert-Brauer-Hasse-Noether theorem allows one to easily determine when a field
extension of K embeds into B:

Theorem. (ABNH) Let K be a number field and B a central simple algebra of dimension
n2 over its center K. Suppose that [L : K] = n. There is an embedding of L/K into B if
and only if for each prime ν of K and for all primes P of L lying above ν, mν | [LP : Kν ].

It is natural to seek an integral analogue of the Albert-Brauer-Hasse-Noether theorem. Let
K,L be as above with rings of integers OK and OL respectively. Suppose that K ⊂ L ⊂ B.
For any OK-order Ω ⊆ OL, there exists an OK-order R of rank n in B which contains Ω
(see page 131 of [19]), and it is clear that any order in the same isomorphism class of R
also admits an embedding of Ω. An integral analogue of the Albert-Brauer-Hasse-Noether
theorem should address the question of whether the orders in B which are not isomorphic to
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R but lie in the same genus (locally isomorphic at all finite primes) also admit embeddings
of Ω.

Since it is clear that either every order in an isomorphism class of orders in B admits
an embedding of Ω or none at all do, it is a convenient abuse of language to say that an
isomorphism class either admits or does not admit an embedding of Ω. In the case that not
all isomorphism classes of maximal orders admit an embedding of Ω, we follow Chinburg
and Friedman [10] and call Ω selective.

The first integral refinement of the Albert-Brauer-Hasse-Noether theorem was due to
Chevalley [9]. Let K be a number field, B = Mn(K) and L/K be a degree n extension
of fields. Chevalley’s elegant result is:

Theorem. (Chevalley) The ratio of the number of isomorphism classes of maximal orders
in B = Mn(K) into which OL can be embedded to the total number of isomorphism classes

of maximal orders is [K̃ ∩ L : K]−1 where K̃ is the Hilbert class field of K.

In 1999, Chinburg and Friedman [10] considered quaternion algebras B satisfying the
Eichler condition and proved that the proportion of isomorphism classes of maximal orders
admitting an embedding of a commutative, quadratic OK-order Ω contained in an embedded
quadratic extension of the center is either 1/2 or 1. Their result was later extended to
Eichler orders of arbitrary level by Chan and Xu [8] and independently by Guo and Qin
[12]. Maclachlan [17] considered Eichler orders of square-free level and proved the analogous
theorem for optimal embeddings. The first author of this paper gave a number of criteria
[15] which imply that Ω is not selective with respect to the genus of any fixed order R of B.

Before continuing with the progress on this problem, we note that selectivity has many
interesting applications to hyperbolic geometry. Suppose that K 6= Q is a totally real
number field, B is a quaternion algebra over K in which a unique real prime splits, and that
R1 and R2 are maximal orders of B representing distinct isomorphism classes. Vigneras
[22] used R1 and R2 to construct non-isometric compact hyperbolic 2-manifolds M1 and
M2. She further showed that a sufficient condition for M1 and M2 to be isospectral with
respect to the Laplace-Beltrami operator was the nonexistence of a selective order Ω which
embedded into exactly one of {R1,R2}. Vigneras’ original examples of isospectral but not
isometric hyperbolic 2-manifolds have enormous genus: 100,801. Recently Doyle, Voight and
the first author of this paper [11] have applied the results of [10],[8],[12] in order to produce
isospectral but not isometric hyperbolic 2-orbifolds with underlying surface of genus 0, and
have proven that these orbifolds are minimal among all isospectral but not isometric surfaces
arising from maximal arithmetic Fuchsian groups. Although we do not consider applications
to hyperbolic geometry in this paper, it is likely our results can be applied in order to prove
the isospectrality of lattices in more general symmetric spaces.

The first work beyond Chevalley’s in the non-quaternion setting was by Arenas-Carmona
[1]. The setting was a central simple algebra B over a number field K of dimension n2, n ≥ 3
with the proviso that at each finite prime ν of K, Bν is either Mn(Kν) or a division algebra,
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that is ν either splits in B or is totally ramified. He considered embeddings of the ring of
integers OL of an extension L/K of degree n into maximal orders of B and establishes a
proportion analogous to Chevalley’s: his Theorem 1 says that the ratio of the number of
isomorphism classes of maximal orders in B into which OL can be embedded to the total
number of isomorphism classes of maximal orders is [Σ ∩ L : K]−1 where Σ is a spinor
class field. In Corollary 5.2, we show that if Bν is a division algebra for any prime ν, this
proportion is always one, meaning (that restricted to algebras with no partial ramification),
we must have Bν = Mn(Kν) for every finite prime ν in order to realize selective orders.

In [16], we considered central simple algebras B of odd prime degree p, but considered
embedding nonmaximal orders Ω ⊂ OL into maximal orders in B and proved analogous
results (Theorem 3.3 of [16]) which was refined to indicate how the conductor of Ω affects
selectivity. In that paper we noted the first instance of Corollary 5.2, precluding selectivity
when B was a degree p division algebra.

Continuing with the history, in a recent preprint [2], Arenas-Carmona extends his results
on spinor class fields to prove the existence and give a characterization of the representation
field for an arbitrary commutative order Ω in a central simple algebra. In the final section
of that paper, he restricts his consideration to central simple algebras without partial rami-
fication, and applies his main theorem to derive corollaries which connect the selectivity of
an integral domain Ω to the arithmetic of its field of fractions.

In this paper we too investigate embedding problems, though we bring the algebraic and
geometric properties of affine buildings to bear as the fundamental tool which affords a very
visual characterization of the local constraints which determine embeddability. In the end
we apply our results to refine known results on selectivity. We now give a more detailed
overview of our work.

Any question concerning global embeddings naturally begins with local considerations, so
we begin with a detailed investigation of the local embedding problem. Since a central simple
algebra B/K is split at almost all primes of K, we consider the generic case of embedding
the global ring of integers OL into maximal orders in Mn(k) where k is a non-archimedean
local field. Corollary 2.5 shows that this is really a local question:

Corollary. Let B be a central simple algebra over a number field K of dimension n2, and L
a degree n field extension of K which embeds into B. Let p be a prime of K which splits in B
and is unramified in L, and let Ep a maximal order in Bp. Then the following are equivalent:

(1) OL ⊂ Ep
(2) OLP

⊂ Ep for some prime P of L dividing pOL.
(3) ⊕P|pOLP

⊂ Ep where the sum is over all primes P | pOL.

Since every maximal order in Mn(k) can be identified with a vertex in the affine building
for SLn(k), we are able to leverage both algebraic and geometric properties of buildings to
give a very explicit characterization of these embeddings (Theorem 2.1):
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Theorem. Let B be a central simple algebra over a number field K of dimension n2 and L a
degree n field extension of K which embeds into B. Let p be a prime of K which splits in B
and is unramified in L, and write pOL = P1P2 · · ·Pg, where fi = f(Pi|p) are the associated
inertia degrees. Then OL is contained in the maximal orders of Bp

∼= Mn(Kp) represented by
the homothety class [L] = [a1, . . . , an] ∈ Zn/Z(1, . . . , 1) if and only if there are ℓi ∈ Z such
that [L] = [ℓ1, . . . , ℓ1︸ ︷︷ ︸

f1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
f2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
fg

].

To apply these local results to the problem of global embeddings, we next construct a set of
representatives of the isomorphism classes of maximal orders in B, i.e., representatives of the
genus of R, using a local-global correspondence as follows. We associate to R a class field,
K(R), which for maximal orders R is contained in the Hilbert class field of K. The class
field corresponds to a class group derived from the normalizer of R. We choose primes ν of
K so that the corresponding Artin symbols (ν,K(R)/K) are generators of the Galois group

of K(R)/K which reflect the splitting behavior of ν in L (and its Galois closure L̂). We show
that key to determining whether OL embeds into a maximal order E in B is understanding
the arithmetic of L0 = L∩K(R). More precisely, using the local characterization of maximal
orders via affine buildings, we define an idelic analog, δ(R, E), of the distance ideal (see [10])
between the fixed maximal order R and any other maximal order E . We prove (Theorem 4.1)
that

Theorem. E admits an embedding of OL if and only if the idelic Artin symbol (δ(R, E), L0/K)
is trivial in Gal(L0/K).

From this we deduce a selectivity result, Corollary 4.2:

Corollary. The ratio of the number of isomorphism classes of maximal orders in B which
admit an embedding of OL to the total number of isomorphism classes of maximal orders is
[L0 : K]−1 where L0 = K(R) ∩ L.

This corollary has the same shape as many previous results giving the proportion (in terms
of an index of fields) of the number of isomorphism classes of maximal orders in B which
admit an embedding of OL. It implies Chevalley’s theorem (in the case that B = Mn(K))
and should be viewed as a generalization of Chevalley’s result to arbitrary central simple
algebras of finite degree. The concreteness of our construction allows us to sharpen selectivity
results further, by computing the index in specific cases.

Corollary 5.2 shows that if Bν is a division algebra at any finite prime, then there is no
selectivity (i.e., the index is one). In particular if Ω ⊆ OL is any OK-order, then Ω is never
selective; that is, every maximal order in B admits an embedding of Ω. This corollary refines
the final corollaries of [2] in which Arenas-Carmona considers central simple algebras without
partial ramification. When the central simple algebra B/K has degree n ≥ 3, B can never be
fully ramified at any infinite prime, so that a requirement of no partial ramification together
with the requirement that Bν is never a division algebra implies B is split at all primes, that
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is the algebras (with no partial ramification) which admit selective orders must be matrix
algebras.

We conclude with Example 5.3 produced using Magma [6], which demonstrates that se-
lectivity in an algebra with partial ramification is still possible, demonstrating that the
phenomenon of selectivity is not restricted to matrix algebras.

2. Local embeddings via buildings

Let L/K be a degree n extension of number fields, B/K a central simple algebra of
dimension n2 which contains L, and p a prime of K which splits in B and is unramified in
L. In this section we characterize explicitly all the maximal orders of Bp which admit an
embedding of OL.

Since OL has rank n over K, any embedding ϕ of OL into a maximal order E ⊂ Bp extends
to an inner automorphism of Bp by Skolem-Noether, thus E contains a conjugate of OL, or
equivalently, OL is contained in a conjugate of E . We therefore begin by characterizing those
maximal orders which (simultaneously) contain OL.

Fix a maximal order R of B containing OL. The prime p splits in B, so that Bp
∼= Mn(Kp)

hence all maximal orders are conjugate ((17.3), (17.4) of [19]). By a choice of basis we may
assume that Bp is identified with Mn(Kp) so that Rp = Mn(Op).

Write pOL = P1P2 · · ·Pg as a product of primes in L, and let fi = f(Pi|p) be the
associated inertia degrees. Of course we have f1 + · · ·+ fg = n, and

(1) L⊗K Kp
∼= ⊕g

i=1LPi
→֒ ⊕g

i=1Mfi(Kp) →֒ Mn(Kp).

In particular, since all the maximal orders of Mfi(Kp) are conjugate, by a change of basis
we adjust the embeddings LPi

→֒ Mfi(Kp) so that OPi
→֒ Mfi(Op). Thus

(2) OL ⊂ OL ⊗OK
Op →֒ ⊕g

i=1OPi
→֒ ⊕g

i=1Mfi(Op) →֒ Mn(Op).

Fix a uniformizing parameter π of Op, and let Dℓ
k = diag(πℓ, . . . , πℓ

︸ ︷︷ ︸
k

, 1, . . . , 1) ∈ Mn(Kp).

Thus

(3) R(k, ℓ) := Dℓ
kMn(Op)D

−ℓ
k =

(
Mk(Op) pℓMk×n−k(Op)

p−ℓMn−k×k(Op) Mn−k(Op)

)
⊂ Mn(Kp).

Note that R(0, ℓ) = R(n, ℓ) = R(k, 0) = Rp = Mn(Op). From equations (2),(3) above, it
is evident that for all ℓ1, . . . , ℓg ∈ Z,

(4) OL ⊂ R(f1, ℓ1) ∩ R(f1 + f2, ℓ2) ∩ · · · ∩ R(f1 + · · ·+ fg, ℓg),
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that is,

(5) OL ⊂
⋂

ℓi∈Z

[
R(f1, ℓ1) ∩ R(f1 + f2, ℓ2) ∩ · · · ∩ R(f1 + · · ·+ fg, ℓg)

]
=

g⊕

i=1

Mfi(Op).

We now translate this to the language of affine buildings. We have picked a basis
{ω1, . . . , ωn} of Kn

p (and hence in particular fixed an apartment of the building associated to
SLn(Kp)), so that with respect to this basis, Rp = Mn(Op) = End(Λ), where Λ = ⊕n

i=1Opωi.
Also we have R(k, ℓ) = End(M(k, ℓ)) where M(k, ℓ) = ⊕k

i=1Opπ
ℓωi ⊕ ⊕n

i=k+1Opωi and π
is our fixed uniformizer in Op. As usual, this maximal order in Bp can be represented by
the homothety class of the lattice M(k, ℓ), [M(k, ℓ)] := [ℓ, . . . , ℓ︸ ︷︷ ︸

k

, 0, . . . , 0] ∈ Zn/Z(1, . . . , 1).

Observe that R(k, ℓ) has type kℓ (mod n) (see [7]).

With the notation fixed as above, we characterize precisely which maximal orders in this
apartment contain OL.

Theorem 2.1. Let B be a central simple algebra over a number field K of dimension n2

and L a degree n field extension of K which embeds into B. Let p be a prime of K which
splits in B and is unramified in L, and write pOL = P1P2 · · ·Pg, where fi = f(Pi|p) are the
associated inertia degrees. Then OL is contained in the maximal orders of Bp represented by
the homothety class [L] = [a1, . . . , an] ∈ Zn/Z(1, . . . , 1) if and only if there are ℓi ∈ Z such
that [L] = [ℓ1, . . . , ℓ1︸ ︷︷ ︸

f1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
f2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
fg

].

The following corollary is immediate.

Corollary 2.2. OL is contained in maximal orders in Bp of types td where d =
gcd(f1, . . . , fg) | n and t = 1, 2, . . . , n/d. In particular in a standard fundamental cham-
ber containing Rp ↔ [0, . . . , 0], OL is contained in the maximal orders corresponding
to the vertices v0 = [0, . . . , 0], v1 = [1, . . . , 1︸ ︷︷ ︸

f1

, 0, . . . , 0], v2 = [1, . . . , 1︸ ︷︷ ︸
f1+f2

, 0, . . . , 0], . . . ,

vg−1 = [ 1, . . . , 1︸ ︷︷ ︸
f1+···+fg−1

, 0, . . . , 0].

Remark 2.3. Theorem 2.1 answers the question of which maximal orders contain OL. The
answer to which orders admit an embedding of OL follows quite easily: If an order E admits
an embedding of OL, then a conjugate of E contains OL. But conjugation just amounts to a
change of basis and hence a change of apartment in the building, so we can simply translate
the results for containment to those of embedding by conjugation.

To proceed, we need a technical lemma.

Lemma 2.4. Let R be the valuation ring of p in K, and S its integral closure in L. Suppose
that Ep is a maximal order in Bp = Mn(Kp) and that OL ⊂ Ep. Then S ⊂ Ep.
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Proof. By Corollary 5.22 of [4], S is the intersection of all valuation rings of L which contain
R. The valuation ring R is equal to the localization of OK at the prime ideal p, and the
valuation rings of L which contain R are precisely the localizations of OL at the primes
P1, . . . ,Pg of L which lie above p. By p43 of [19], the intersection of these localizations,
S, is equal to the localization T−1OL, where T = OL \ (P1 ∪ · · · ∪ Pg). To show S ⊂ Ep
we choose α/β ∈ S with α, β ∈ OL and β /∈ P1 ∪ · · · ∪ Pg. We are assuming OL ⊂ Ep =
γpMn(Op)γ

−1
p for some γp ∈ B×

p , so write α = γpAγ
−1
p and β = γpBγ−1

p for A,B ∈ Mn(Op).
Finally recall that OL ⊂ OL ⊗OK

Op →֒ ⊕g
i=1OPi

→֒ ⊕g
i=1Mfi(Op) →֒ Mn(Op), so that

det(β) =
∏g

i=1NLPi
/Kp

(β) = NL/K(β). As β ∈ O×
Pi

for each i, its local norm is in O×
p . Thus

β is a unit in Ep from which the lemma follows. �

Proof of Theorem. Consider equation (5). We know thatOL is contained inR(f1, ℓ1)∩R(f1+
f2, ℓ2)∩· · ·∩R(f1+· · ·+fg, ℓg) for any choice of ℓi ∈ Z. These orders correspond to homothety
classes of lattices [M(f1 + · · ·+ fi, ℓi)] = ℓi[M(f1 + · · ·+ fi, 1)] = ℓi[1, . . . , 1︸ ︷︷ ︸

f1+···+fi

, 0, . . . , 0] as an

element of Zn/Z(1, . . . , 1). In [5], it is shown that walks in an apartment are consistent with
the natural group action on Zn/Z(1, . . . , 1), and since by [21] the intersection of any finite
number of maximal orders (containing On

p ) in an apartment is the same as the intersection
of all the maximal orders in the convex hull they determine, we deduce that OL is contained
in maximal orders corresponding to

[M(f1, ℓ1) +M(f1 + f2, ℓ2) + · · ·+M(f1 + · · ·+ fg, ℓg)] =

[ℓ1 + · · ·+ ℓg, . . . , ℓ1 + · · ·+ ℓg︸ ︷︷ ︸
f1

, ℓ2 + · · ·+ ℓg, . . . , ℓ2 + · · ·+ ℓg︸ ︷︷ ︸
f2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
fg

].

Since the ℓi ∈ Z are arbitrary, a simple change of variable (ℓk + · · ·+ ℓg 7→ ℓk) shows that
OL is contained in the maximal orders specified in the proposition. We now show these are
the only maximal orders in the apartment which contain OL.

Suppose that OL is contained in a maximal order Λ(a1, . . . , an) where

Λ(a1, . . . , an) = diag(πa1 , . . . , πan)Mn(Op)diag(π
a1 , . . . , πan)−1 =




Op pa1−a2 pa1−a3 . . . pa1−an

pa2−a1 Op pa2−a3 . . . pa2−an

pa3−a1 pa3−a2 . . . . . . pa3−an

...
... Op

...
pan−a1 . . . pan−an−1 Op




,

that is Λ(a1, . . . , an) corresponds to the homothety class of the lattice [a1, . . . , an] relative
to our fixed basis {ω1, . . . , ωn} of Kn

p . By equation (5), we can reorder subsets of the basis
{ω1, . . . , ωf1}, {ωf1+1, . . . , ωf1+f2}, . . . , {ωf1+···+fg−1+1, . . . , ωn} so that equation (5) remains
valid and a1 ≤ · · · ≤ af1 , af1+1 ≤ · · · ≤ af1+f2 , . . . , af1+···+fg−1+1 ≤ · · · ≤ an.
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Now we assume that [a1, . . . , an] is not of the form [ℓ1, . . . , ℓ1︸ ︷︷ ︸
f1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
f2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
fg

] for

ℓi ∈ Z. Since we can permute the order in which we list the primes Pi of L lying above
p, we may assume that there is an r0 with 1 < r0 ≤ f1 so that a1 = · · · = ar0−1 <
ar0 ≤ · · · ≤ af1 . We already know that OL →֒ ⊕g

i=1Mfi(Op) →֒ Mn(Op), so we focus on
the upper f1 × f1 block of ⊕g

i=1Mfi(Op) ∩ Λ(a1, . . . , an). That intersection is contained in

Γp :=

(
Mr0−1(Op) πa1−af1Mr0−1×f1−r0+1(Op)

πMf1−r0+1×r0−1(Op) Mf1−r0+1(Op)

)
∩Mf1(Op).

Since OL ⊂ Λ(a1, . . . , an), Lemma 2.4 gives us that S, the integral closure of R = (Op∩K)
in L, is contained in Λ(a1, . . . , an). Thus S ⊗R Op ⊂ Λ(a1, . . . , an). By Proposition II.4 of
[20], S ⊗R Op

∼= ⊕g
i=1OPi

, so ⊕g
i=1OPi

⊂ Λ(a1, . . . , an).

As ⊕g
i=1OPi

⊂ ⊕g
i=1Mfi(Op), we may assume that OP1

⊂ Γp, from which we shall derive
a contradiction. Since LP1

/Kp is unramified, we can write OP1
= Op[α] for some α whose

reduction modulo p generates the residue field extension (see Theorem 5.8 of [19]). In
particular if h is the minimal polynomial of α over Kp, then h ∈ Op[x] is irreducible of
degree f1 and the reduction of h modulo p is irreducible. Now viewing α as an element of Γp,
we consider its characteristic polynomial χα ∈ Op[x], also of degree f1. Since h is irreducible,
we have h | χα and so by degree arguments, h = χα. On the other hand Γp, viewed modulo
pOp, is upper triangular, so the reduction of h = χp modulo p is reducible in Op/pOp[x], a
contradiction. �

We derive a few interesting corollaries.

Corollary 2.5. Let B be a central simple algebra over a number field K of dimension n2,
and L a degree n field extension of K which embeds into B. Let p be a prime of K which
splits in B and is unramified in L, and let Ep a maximal order in Bp. Then the following are
equivalent:

(1) OL ⊂ Ep
(2) OLP

⊂ Ep for some prime P of L dividing pOL.
(3) ⊕P|pOLP

⊂ Ep where the sum is over all primes P | pOL.

Proof. The implications (3) implies (2) implies (1) are obvious. That (1) implies (3) is exactly
as in the proof of Theorem 2.1 using Lemma 2.4: If S is the integral closure in L of (OK)p
(the localization of OK at the prime p), then Lemma 2.4 shows that OL ⊂ Ep implies that
S ⊂ Ep. Thus S ⊗(Ok)p Op ⊂ Ep. But by Proposition II.4 of [20], S ⊗(Ok)p Op

∼= ⊕P|pOLP
, so

⊕P|pOLP
⊂ Ep. �

It is clear from Theorem 2.1, that when OL ⊂ R and a prime p of K splits completely in
L, then OL is contained in every maximal order in an apartment of the SLn(Kp) building
which contains Rp. In particular OL is contained in every vertex of a fundamental chamber
containing Rp (corresponding to the homothety class [0, . . . , 0]). On the other hand, if p is
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inert in L, then similarly, we see from Corollary 2.2 that OL is contained in precisely one
vertex of the fundamental chamber; indeed it is contained in a unique vertex in the building.
This last observation can be cast in purely local terms.

Corollary 2.6. Let F be a nondyadic nonarchimedean local field, and E the degree n ≥ 3
unramified extension of F . Then there is a unique maximal order E of Mn(F ) containing
OE.

Proof. Let K be a number field with a finite prime ν so that F = Kν , and let B be a central
simple algebra of dimension n2 over K which is split at ν, that is the local index mν = 1.
Let mpi , i = 1, . . . , s be the nontrivial local indices associated to B. By the Grunwald-Wang
theorem [3], we may choose a cyclic extension L/K of degree n so that mpi = [LP : Kpi ] for
all P | pi, i = 1, 2, . . . , s, and [LP : kν ] = n. Since ν ∤ 2 we may choose the extension so
that LP/Kν is unramified which means that ν is inert in L, so that E = LP. The conditions
on the local indices guarantee that L embeds in B via the Albert-Brauer-Hasse-Noether
theorem. So we assume K ⊂ L ⊂ B, and choose a maximal order R containing OL. Then
OL ⊂ Rν . By the previous corollary, OLP

⊂ Rν for the unique prime P lying above ν. We
claim that this is the unique maximal order of Bν = Mn(Kν) containing OLP

. Indeed since
ν is inert in L, Theorem 2.1 characterizes the homothety classes of lattices which correspond
to the maximal orders containing OLP

, as [ℓ, . . . , ℓ] = [0, . . . , 0], the class corresponding only
to Rν . �

3. Global Embeddings

In this section we apply Theorem 2.1 to the problem of determining which isomorphism
classes of maximal orders in the global algebra B admit an embedding of OL.

To begin we need to parametrize the isomorphism classes of maximal orders in B. Re-
call we have fixed a maximal order R which contains OL, and now need to give a set of
representatives of the distinct isomorphism classes comprising the genus of maximal orders.

3.1. Parametrizing the Genus. We want to fix a convenient parametrization of the iso-
morphism classes of maximal orders in B which is compatible with the local embedding
theory of the previous section. We begin by defining a class field K(R) associated to the
maximal order R. We refer to [16] for most of the details.

Given a maximal order R ⊂ B, and a prime ν of K, we define localizations Rν ⊆ Bν by:

Rν =

{
R⊗O Oν if ν is finite

R⊗O Kν = Bν if ν is infinite

For every finite prime ν, it is well-known that Rν is a maximal order of Bν . Let N (Rν)
denote the normalizer of Rν in B×

ν , and nr(N (Rν)) its reduced norm in K×
ν . When ν is

an infinite prime, N (Rν) = B×
ν . If ν is finite, it is convenient to distinguish three cases:
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If ν splits in B, then Bν
∼= Mn(Kν) and every maximal order is conjugate by an element

of B×
ν to Mn(Oν), so every normalizer is conjugate to GLn(Oν)K

×
ν (37.26 of [19]), while if

ν totally ramified in B, Rν is the unique maximal order of the division algebra Bν [19], so
N (Rν) = B×

ν . For ν partially ramified in B, Bν
∼= Mκν

(Dν) with Dν a division algebra of
degree mν over Kν , so Rν is conjugate to Mκν

(Λν) where Λν is the unique maximal order
of Dν (17.3 of [19]). If we choose u ∈ Λ×

ν then a conjugate of U = diag(u, 1, . . . 1) ∈ N (Rν),
and nr(U) = nr(u) ∈ nr(N (Rν)). Finally, we recall (see p145 of [19]) that Λν contains the
ring of integers of an unramified cyclic extension of Kν .

It follows (p 153 of [19]) that for ν infinite or totally ramified, nr(N (Rν)) = nr(B×
ν ) = K×

ν ,
and in all other cases O×

ν (K
×
ν )

n ⊆ nr(N (Rν)), with equality when ν is split. Thus in all
cases O×

ν ⊂ nr(N (Rν)) and for ν infinite or totally ramified in B, K×
ν = nr(N (Rν)), a fact

that will be important in associating a class field to R.

The type number of R is the cardinality of the double coset space B×\JB/N(R) where
JB are the ideles of B. To make use of class field theory, we need to realize this quotient in
terms of the arithmetic of K. Let JK denote the idele group of K.

Theorem 3.1. The reduced norm on B induces a bijection

nr : B×\JB/N(R) → K×\JK/nr(N(R)).

The group K×\JK/nr(N(R)) is abelian with exponent n.

Proof. Here of course we also use nr as the induced reduced norm map on ideles. The proof
is exactly as in Theorems 3.1 and 3.2 of [16]. �

We have seen above that the distinct isomorphism classes of maximal orders in B are
in one-to-one correspondence with the double cosets in the group G = K×\JK/nr(N(R)).
Put HR = K×nr(N(R)) and GR = JK/HR. Since JK is abelian, G and GR are naturally
isomorphic, and since HR contains a neighborhood of the identity in JK , it is an open
subgroup (Proposition II.6 of [13]).

Since HR is an open subgroup of JK having finite index, there is by class field theory
[14], a class field, K(R), associated to it. The extension K(R)/K is an abelian extension
with Gal(K(R)/K) ∼= GR = JK/HR and with HR = K×NK(R)/K(JK(R)). Moreover, a
prime ν of K (possibly infinite) is unramified in K(R) if and only if O×

ν ⊂ HR, and splits
completely if and only if K×

ν ⊂ HR. Here if ν is archimedean, we take O×
ν = K×

ν . From our
computations just above, we saw that O×

ν is always contained in HR. In particular K(R)/K
is an everywhere unramified abelian extension of K.

The Galois group G = Gal(K(R)/K) is a finite abelian group of exponent n. We wish to
specify a set of generators for the group as Artin symbols, (ν,K(R)/K), in such a way that
we can control the splitting behavior of ν in the field L. As L is an arbitrary extension of
K of degree n, this requires some care.
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We have assumed that L ⊂ B. Put L0 = K(R) ∩ L and L̂0 = L̂ ∩K(R) where L̂ is the

Galois closure of L. Then L0 ⊂ L̂0 and we define subgroups of G: Ĥ = Gal(K(R)/L̂0) ⊆
H = Gal(K(R)/L0). We write the finite abelian groups Ĥ , H/Ĥ, and G/H as a direct
product of cyclic groups:

G/H =〈ρ1H〉 × · · · × 〈ρrH〉,(6)

H/Ĥ = 〈σ1Ĥ〉 × · · · × 〈σsĤ〉,(7)

Ĥ = 〈τ1〉 × · · · × 〈τt〉.(8)

The following proposition is clear.

Proposition 3.2. Every element ϕ ∈ G can be written uniquely as ϕ = ρa11 · · · ρarr σb1
1 · · ·σbs

s τ c11 · · · τ ctt
where 0 ≤ ai < |ρiH|, 0 ≤ bj < |σjĤ|, and 0 ≤ ck < |τk|, with | · | the order of the element
in the respective group.

Next we characterize each of these generators in terms of Artin symbols. Since the vehicle
to accomplish this is the Chebotarev density theorem which provides an infinite number of
choices for primes, we may and do assume without loss that the primes we choose to define

the Artin symbols are unramified in both L̂ and B.

First consider the elements τk ∈ Ĥ = Gal(K(R)/L̂0). By Lemma 7.14 of [18], there exist
infinitely many primes νk of K so that τk = (νk, K(R)/K) and for which there exists a

prime Qk of L̂ with inertia degree f(Qk | νk) = 1. Since L̂/K is Galois (and the prime νk is

unramified by assumption), this implies νk splits completely in L̂, hence also in L.

Next consider σjĤ with σj ∈ H = Gal(K(R)/L0). Again by Lemma 7.14 of [18], there
exist infinitely many primes µj of K so that σj = (µj, K(R)/K) and for which there exists
a prime Qj of L with inertia degree f(Qj | µj) = 1.

Finally consider ρkH with ρk ∈ G = Gal(K(R)/K). By Chebotarev, there exist infinitely
many primes λi of K so that ρi = (λi, K(R)/K). For later convenience, we note that by
standard properties of the Artin symbol, ρi = ρi|L0

= (λi, L0/K) whose order in Gal(L0/K)
is equal to the inertia degree f(λi;L0/K).

As we said above, we have assumed without loss that all the primes λi, µj, νk are unramified

in L̂ and B.

3.2. Fixing representatives of the isomorphism classes. As above, R is a fixed maxi-
mal order of B containing OL. For a finite prime p of K which splits in B, we recall the setup
and notation of section 2 where we fixed an apartment in the affine building for SLn(Kp)
which contains the vertex Rp ⊂ Bp

∼= Mn(Kp).

We are interested in vertices of the form R(k, ℓ) defined in equation (3). Because we
shall vary the prime p in the parametrization below, we will write Rp(k, ℓ) for R(k, ℓ) to
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make the dependence on p explicit. Recall that Rp(k, ℓ) corresponds to the homothety class
[ℓ, . . . , ℓ︸ ︷︷ ︸

k

, 0, . . . , 0] ∈ Zn/Z(1, . . . , 1) which has type kℓ (mod n).

Now for the primes λi, µj, and νk we specified above to parametrize G = Gal(K(R)/K),

fix the following local orders using the decomposition of G into G/H , H/Ĥ, and Ĥ:

For each prime λi (i = 1, . . . , r) whose Artin symbol (λi, K(R)/K)) = ρi gives one of the
generators ρiH of G/H , we fix vertices Rλi

(m, 1), m = 0, 1, . . . , |ρiH| − 1 with associated
homothety classes [0, . . . , 0], [1, 0, . . . , 0], [1, 1, 0, . . . , 0],. . . , [1, . . . , 1︸ ︷︷ ︸

|ρiH|−1

, 0, . . . , 0].

For each prime µj (j = 1, . . . , s) whose Artin symbol (µj, K(R)/K)) = σj gives one of the

generators σjĤ of H/Ĥ, we fix vertices Rµj
(1, m), m = 0, 1, . . . , |σjĤ| − 1 with associated

homothety classes [0, . . . , 0], [1, 0, . . . , 0], [2, 0, . . . , 0], . . . , [|σjĤ| − 1, 0, . . . , 0]. Recall that
each µj factors into primes of L with at least one having inertia degree one over µj. Since the
representation above depends on the order in which we list those primes (see equation (2)),
we assume the first prime has degree one.

Finally, for each prime νk (k = 1, . . . , t) whose Artin symbol (νk, K(R)/K)) = τk is one

of the generators of Ĥ , we fix vertices Rνk(m, 1), m = 0, 1, . . . , |τk| − 1 with associated
homothety classes [0, . . . , 0], [1, 0, . . . , 0], [1, 1, 0, . . . , 0], . . . , [1, . . . , 1︸ ︷︷ ︸

|τk|−1

, 0, . . . , 0]. Again recall

that each prime νk splits completely in L, so all the inertia degrees are one.

Remark 3.3. We note that using Theorem 2.1 and the conventions on the degree one primes
listed above, we see that OL is a subset of Rµj

(1, m) for every value of m, and of Rνk(m
′, 1)

for 0 ≤ m′ ≤ n.

Now we use the local-global correspondence for orders to define global orders from the
above local factors. Fix the following notation:

a = (ai) ∈ Z/|ρ1H|Z× · · · × Z/|ρrH|Z,
b = (bj) ∈ Z/|σ1Ĥ|Z× · · · × Z/|σsĤ|Z,
c = (ck) ∈ Z/|τ1|Z× · · · × Z/|τt|Z.

Here we assume the coordinates ai, bj, ck are integers which are the least non-negative residues
corresponding to the moduli. Define maximal orders in B via the local-global correspondence:

Da,b,c
p =





Rp if p /∈ {λi, µj, νk},
Rλi

(ai, 1) if p = λi, i = 1, . . . , r,

Rµj
(1, bj) if p = µj, j = 1, . . . , s,

Rνk(ck, 1) if p = νk, k = 1, . . . , t.
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We claim that such a collection of maximal orders parametrizes the isomorphism classes
of maximal orders in B. That is, given any maximal order E in B, we show there are unique
tuples a,b, c so that E ∼= Da,b,c. To see this let M denote the set of all maximal orders in B,
and define a map (called the GR-valued distance idele) δ : M×M → GR = JK/HR (where
HR = K×nr(N(R))) as follows: Let R1,R2 ∈ M. For a finite prime p of K which splits
in B, we have the notion of the type distance between their localizations: tdp(R1p,R2p) ∈
Z/nZ (see section 2 of [16]). If p is either archimedean or finite and ramified in B, define
tdp(R1p, R2p) = 0. Recall that since R1p = R2p for almost all p, tdp(R1p,R2p) = 0 for almost

all primes p. Let δ(R1,R2) be the image in GR of the idele (π
tdp(R1p,R2p)
p ), where πp is a fixed

uniformizing parameter in Kp. Note that while the idele is not well-defined, its image in GR

is since the local factor at the finite split primes has the form K×
p /O×

p (K
×
p )

n.

We now show that the orders {Da,b,c} parametrize the isomorphism classes of maximal
orders in B.

Proposition 3.4. Let R be a fixed maximal order in B, and consider the collection of
maximal orders Da,b,c defined above.

(1) If E is a maximal order in B and E ∼= R, then δ(R, E) is trivial.
(2) If E ∼= E ′ are maximal orders in B, then δ(R, E) = δ(R, E ′).
(3) Da,b,c ∼= Da

′,b′,c′ if and only if a = a′, b = b′, and c = c′.

Proof. The first two statements are proven exactly as in Proposition 3.3 of [16]. For the last,
let q be a finite prime of K and πq the corresponding uniformizing parameter. Let eq denote
the idele with πq in the qth place and 1’s elsewhere. Observe that Artin reciprocity identifies
the image of eq in GR = JK/HR with the Artin symbol (q, K(R)/K). It follows that

δ(Da,b,c,Da
′,b′,c′) ↔

g∏

i=1

ρ
a′i−ai
i

s∏

j=1

σ
b′j−bj
j

t∏

k=1

τ
c′
k
−ck

k ∈ Gal(K(R)/K),

which is trivial if and only if a = a′, b = b′, and c = c′ by Proposition 3.2. The result is
now immediate. �

4. Embedding OL into maximal orders in B

Pivotal to understanding which maximal orders in B admit an embedding of OL is the
following characterization.

Theorem 4.1. Assume that OL ⊂ R ⊂ B. Let E be another maximal order in B, and let
δ(R, E) denote the distance idele defined above. Then E admits an embedding of OL if and
only if the idelic Artin symbol (δ(R, E), L0/K) is trivial in Gal(L0/K).

Proof. Assume that E admits an embedding of OL; that is, E contains a conjugate of OL.
By Proposition 3.4, we may replace E by a conjugate order without changing the distance
idele, so we may assume without loss that OL ⊂ R ∩ E . The distance idele δ(R, E) is the
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coset δ̃HR ∈ GR where δ̃ =
∏

p e
tdp(Rp,Ep)
p with the product over all the finite primes of K

which split in B and for which Rp 6= Ep, and with ep = (1, . . . , 1, πp, 1 . . . , 1) ∈ JK . Write
σ = (δ(R, E), L0/K) ∈ Gal(L0/K). Then σ =

∏
p(p, L0/K)tdp(Rp,Ep) where (p, L0/K) is

the Artin symbol. Since OL ⊂ Ep, we know by Theorem 2.1 that Ep corresponds to the
homothety class [ℓ1, . . . , ℓ1︸ ︷︷ ︸

f1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
f2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
fg

] for integers ℓi and where the fi are the

inertia degrees of the primes of L lying above p. Thus, tdp(Rp, Ep) ≡ ∑g
i=1 ℓifi (mod n).

Now each fi is divisible by f0 = f(p;L0/K), the inertia p gains up to L0 (recall L0/K is
Galois). But f0 is order of the Artin symbol (p;L0/K), so each term in the product is trivial,
hence so is σ.

For the converse, we suppose that σ = (δ(R, E), L0/K) is the trivial element of Gal(L0/K)
and show that E admits an embedding of OL. In parametrizing the isomorphism classes
of maximal orders of B, we wrote Gal(L0/K) as a product of cyclic groups: With
G = Gal(K(R)/K) and H = Gal(K(R)/L0) we have G/H ∼= 〈ρ1H〉 × · · · × 〈ρrH〉, so
Gal(L0/K) ∼= 〈ρ1〉 × · · · × 〈ρr〉 where ρi is the restriction of ρi to L0. Each ρi is the Artin
symbol (λi, K(R)/K).

Our given E is isomorphic to a unique element, Da,b,c, of our parametrizing set of repre-
sentatives of the isomorphism classes of maximal orders, and since δ(R, E) = δ(R,Da,b,c) by
Proposition 3.4, it is sufficient to show that σ = (δ(R,Da,b,c), L0/K) trivial in Gal(L0/K)
implies that OL ⊂ Da,b,c.

We are assuming that OL ⊂ R, and since R and Da,b,c are equal at all primes outside the
finite set T = {λ1, . . . , λr, µ1, . . . , µs, ν1, . . . , νt} of parametrizing primes, OL ⊂ Da,b,c

p for all

primes p /∈ T . For p = µj or νk, we have OL ⊂ Da,b,c
p by Remark 3.3. So we need to deal

only with the primes λi.

Recall that for p /∈ T we have tdp(Rp,Da,b,c
p ) = 0 so that (δ(R,Da,b,c), L0/K) =∏

p∈T (p, L0/K)tdp(Rp,D
a,b,c
p ). Furthermore the primes µj, νk ∈ T correspond to ele-

ments in Gal(K(R)/L0) so their restriction to L0 is trivial. Thus our condition re-

duces to
∏r

i=1(λi, L0/K)
tdλi (Rλi

,Da,b,c
λi

)
= 1. Since Gal(L0/K) is the direct product

∏r
i=1〈(λi, L0/K)〉, we have that

∏r
i=1(λi, L0/K)

tdλi (Rλi
,Da,b,c

λi
)
= 1 implies each of the terms

(λi, L0/K)
tdλi(Rλi

,Da,b,c

λi
)
= 1, so tdλi

(Rλi
,Da,b,c

λi
) ≡ 0 (mod f(λi;L0/K)) since f(λi;L0/K)

is the order of the Artin symbol. Since we have parametrized Da,b,c
λi

with maximal orders
whose corresponding homothety classes have types 0, 1, . . . , f(λi;L0/K) − 1, we have that

Da,b,c
λi

= Rλi
, so OL ⊂ Da,b,c

λi
, and hence OL ⊂ Da,b,c

p for all primes p which completes the
proof. �

Corollary 4.2. The ratio of the number of isomorphism classes of maximal orders in B
which admit an embedding of OL to the total number of isomorphism classes of maximal
orders is [L0 : K]−1 where L0 = K(R) ∩ L.
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Proof. Let {Da,b,c} be the parametrization of the isomorphism classes of maximal orders
of B given in section 2. We must show that exactly [K(R) : L0] of these orders admit an
embedding of OL. By the proof of Theorem 4.1, we have that σ = (δ(R,Da,b,c), L0/K) =∏r

i=1(λi, L0/K) = 1 in Gal(L0/K) if and only if Da,b,c
λi

= Rλi
for i = 1, . . . , r; or equivalently,

a = 0. But the number of orders {Da,b,c} with a = 0 is |H/Ĥ||Ĥ| = |H| = [K(R) : L0],
which finishes the proof. �

5. Examples and Applications

Corollary 4.2 allows a significant refinement of the contexts in which selectivity can occur.
We begin with the first instance in which selectivity was noted, by recovering Chevalley’s [9]
elegant result when B = Mn(K).

Corollary 5.1 (Chevalley). The ratio of the number of isomorphism classes of maximal
orders in B = Mn(K) into which OL can be embedded to the total number of isomorphism

classes of maximal orders is [K̃ ∩ L : K]−1 where K̃ is the Hilbert class field of K.

Proof. We are assuming that OL ⊂ R, where R our fixed maximal order in B. We need

only show that K̃ ∩ L = K(R) ∩ L.

When B = Mn(K), we have that HR = K×Jn
KJK,S∞

so that GR = CK/C
n
K where CK is

the ideal class group of K. Since GR is a quotient of the ideal class group (i.e., Gal(K̃/K)),

K(R) ⊂ K̃ is the subfield corresponding to Cn
k . In particular K(R) ∩ L = L0 ⊂ K̃ ∩ L.

Conversely, since K(R) corresponds to Cn
K , it is the maximal abelian unramified extension

of K with exponent n. Since [L : K] = n, K̃ ∩ L is an unramified extension of K having

exponent n, so by maximality K̃ ∩ L ⊂ K(R) ∩ L. �

Examples of selective and non-selective orders in matrix algebras are given in [16]. Also
in that paper, we prove that orders in central simple division algebras of (odd) prime degree
are never selective. We now show exactly how this generalizes to arbitrary degree n ≥ 3.

Recall that locally there is an isomorphism Bν
∼= Mκν

(Dν), where Dν is a central simple
division algebra of dimensions m2

ν over Kν , and we have n = κνmν . We recall the Albert-
Brauer-Hasse-Noether theorem:

Theorem. (ABNH) Let the notation be as above, and suppose that [L : K] = n. Then there
is an embedding of L/K into B if and only if for each prime ν of K and for all primes P

of L lying above ν, mν | [LP : Kν ].

The first case we consider is a non-split algebra B which is fully ramified at some prime
(necessarily a finite prime since n > 2). We show that in this case there is never selectivity.
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Corollary 5.2. Suppose there is a prime ν of K so that Bν is a division algebra, i.e., mν = n
and L ⊂ B. Let Ω ⊆ OL be any OK-order. Then Ω is never selective; that is, every maximal
order in B admits an embedding of Ω.

Proof. It is enough to show that every maximal order in B admits an embedding of OL. We
suppose that R is our fixed maximal order containing OL. That Bν is a division algebra
means Rν is the unique maximal order in Bν , whose normalizer is all of B×

ν and so K×
ν ⊂ HR.

As we have seen this implies that ν splits completely in the class field K(R), and hence also
in L0 = K(R) ∩ L.

By the Albert-Brauer-Hasse-Noether theorem, mν = n | [LP : Kν ] for all P | νOL. But
this implies there is a unique primeP of L lying above ν, and n = [LP : Kν ] = e(P|ν)f(P|ν).
Now P0 = P ∩ L0 is the unique prime of L0 lying above ν, so [L0 : K] = e(P0|ν)f(P0|ν).
But ν splits completely in L0 which implies [L0 : K] = 1. The result is now immediate from
Corollary 4.2. �

What remains to resolve is the question of how partial ramification affects selectivity. We
demonstrate by means of an explicit example that selectivity can occur in a partially ramified
algebra.

Example 5.3. To compute our example, we employ Magma [6]. We construct a central simple
algebra B of degree 16 over K = Q(

√
−14) which is ramified at two finite primes K so that at

each of those primes P, BP
∼= M2(Dp) with DP a quaternion division algebra over KP. We

construct a field L which is contained in B and for which OL is selective. By Corollary 4.2,
we need only show that L0 = K(R) ∩ L 6= K. In the example we construct, the class field
K(R) is simply the Hilbert class field of K.

The following calculations were produced by Magma [6]. Let K = Q(
√
−14). The Hilbert

class field of K is HK = K(α) where α4 +4α2− 28 = 0, and the ideal class group of K, CK ,
is isomorphic to Z/4Z.

Let L0 = K(β) where β2 + (4
√
−14 + 22)β + (44

√
−14 + 33) = 0, and let L = L0(

√
−5);

then L ∩ HK = L0 6= K. Let P137,1, P137,2 be the two primes of K lying above 137 in Z.
One checks they are principal in K, so their classes [P137,i] are trivial in CK , and each prime
splits completely in HK .

Let B be the central simple algebra over K defined by the data: dimK B = 16; Ram(B) =
{P137,1,P137,2}; and mP137,i

= 2 for i = 1, 2, that is BP137,i
∼= M2(DP137,i

) with DP137,i

a quaternion division algebra over KP137,i
, and is split at every other prime of K. The

existence of B is guaranteed by short exact sequence of Brauer groups induced by the Hasse
invariants (see e.g., (32.13) of [19]). To see that L embeds in B, we need only verify the
conditions of the Albert-Brauer-Hasse-Noether theorem above. Since mν = 1 for all primes
except P137,1,P137,2, we simply need to observe that mP137,i

= 2 | [LQ : KP137,i
] for every

prime Q of L lying above P137,i which is verified by Magma which shows (by factoring) that
each prime is unramified and has inertia degree 2 in L.
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Then for a maximal order R ⊂ B, with OL ⊂ R, the associated class field has Galois
group Gal(K(R)/K) ∼= IK/(PKI

4
K)

∼= CK , since [P137,i] is trivial. So G = Gal(K(R)/K) =
Gal(HK/K) ∼= CK . Since K(R) ⊆ HK we have equality, and selectivity is demonstrated.

We continue this example and give our parametrization as in Equations (6) - (8). Put

H = Gal(K(R)/L0) = Ĥ . Then Gal(L0/K) ∼= G/H = 〈σH〉 where σ is the Artin symbol
(P3, HK/K) withP3 is the prime ofK with P3∩Z = 3Z. Finally chooseP7 with 7OK = P2

7.
Then

f(P7;L0/K) = 1; f(P7;K(R)/K) = 2; f(P7;L/K) = 1.

So H = Gal(K(R)/L0) = 〈(P7;K(R)/K)〉.
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