Effect of Wind on Wave Shape: Shallow Water
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Results: Solitary Profile

Results: Cnoidal Shape Parameters

Introduction: Wind-Wave Coupling

Early theoretical investigations (e.g., Jeffreys
- Miles . Phillips

coupling focused on deriving growth rates

) into wind-wave

Most employed phase-averaging technique to
extract energy and momentum fluxes
This removes phase-dependent information such
as wave shape
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LES of pressure above a wave (Husain et al. )

Numerical simulations have revealed airflow
properties above wave fields
But many prescribe fixed, sinusoidal wave profiles

Therefore, a new approach is needed to relate
wind and wave shape

Introduction: Intermediate/Deep

Water (Zdyrski and Feddersen 2019)

Stokes wave ansatz (with wave amplitude a,
wave number k, and phase speed c)

nk = (ak)lsin[k(a: — ct),
4 5( k) Ay sin[2k(z — ct) + B

(2)

Biphase (5: phase shift between primary and
first harmonic (zero for unforced Stokes wave)
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Wind-induced biphase for two forcing types in
intermediate/deep water (Zdyrski and Feddersen )

Decreasing kh amplitfies wind-induced shape
change, motivating current study for kh < 1

Introduction: Wave Shape

Wave shape is important in many disciplines, e.g.,
beach morphodynamics and remote sensing

A few laboratory experiments have quantified
wind-speed dependent changes to wave shape

Forced vs L nforced Wave' Profile
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Reproduced from Feddersen and Veron (2005)
Wind modifies skewness S (Cox and Munk

) and A asymmetry (Leykin et al. )
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() is an average over a wave period and H is the

Hilbert transform

Setup: Governing Equations

Profile n(x,t) and potential Vo(x,t,2) = u
Standard incompressibility, bottom boundary, and
surface boundary conditions

Pressure enters Bernoulli equation
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Choose Jeffreys-type forcing:

p($7 t) — Pa:ﬂ?(% t) (4)

at 2z =71

Surface Height vs Time: a/h = 0.1, kh = 0.3
Pik/(pwg) = 0.025
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Distance kx
Onshore and offshore winds acting on soliton profiles

kn as a function of distance kx at various times t\/ﬁ,
shown in a frame moving with the unforced phase speed

As time increases, the top plot—depicting

onshore wind—shows a growing and

steepening effect, while the bottom, offshore

wind depicts a decaying and broadening effect

The wind induces horizontal asymmetry,
particularly apparent in the bottom plot
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Setup: Perturbation Expansion

Expand dependent variables in small parameter ¢
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Multiple Scales Method: use slower timescales
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Collect orders of £ gives KdV-Burgers equation
Lom  3mom 1 dXm P 182771 (5)
Oty 2a dx  6k20x3  pug2 0x?

with cg = /gh

P > 0 for onshore wind, P < 0 for offshore

Results: Cnoidal Profile

Surface Height vs Time: a/h = 0.1, kh = 0.3
Pik/(pwg) = 0.025
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Distance kx
Onshore and offshore winds acting on cnoidal profiles

kn as a function of distance kx at various times tm,
shown in a frame moving with the unforced phase speed

Unforced KdV equation also has periodic

“cnoidal” wave solutions

Onshore wind increases skewness: offshore

wind decreases it

Jeffreys onshore (offshore) forcing causes waves

to tilt backwards (forwards)

Height, Skewness, and Asymmetry:
a/h =0.1, kh = 0.3
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The height (normalized by the initial height),
skewness, and asymmetry of cnoidal waves as functions of the

nondimensional time t4/g/h

Height, skewness, and asymmetry given for
no wind, onshore wind, and offshore wind

Onshore breezes yield modest growth, an
increasing skewness, and a negative asymmetry
Offshore winds cause decreasing amplitude and
skewness, but increasing asymmetry

Coupled surface pressure to the Bernoulli Eq.
Method of Multiple Scales gave KdV-Burgers Eq.
Numerically calculated shape changes consistent
with casual observations

Surface pressure yields appreciable wave
shape changes in shallow water

References

Husain, Nyla T et al. (2019). “Boundary layer turbulence over surface waves in a strongly
forced condition: LES and observation”. In: Journal of Physical Oceanography 49.8,
pp. 1997-2015.

Feddersen, Falk and Fabrice Veron (2005). “Wind effects on shoaling wave shape”. In:
Journal of physical oceanography 35.7, pp. 1223-1228.

Cox, Charles and Walter Munk (1956). “Slopes of the sea surface deduced from pho-
tographs of sun glitter”. In: Bulletin of the Scripps Institution of Oceanography 6.9,
pp. 401-488.

Leykin, IA et al. (1995). “Asymmetry of wind waves studied in a laboratory tank”. In: Non-
linear Processes in Geophysics 2.3/4, pp. 280-289.

Zdyrski, Thomas and Falk Feddersen (2019). “Wind-Induced Changes to Surface Gravity
Wave Shape in Deep to Intermediate Water”. In: arXiv: f1u-dyn/1911.07879.

Acknowledgements

This material is based upon work supported by the National
Science Foundation and by the Mark Walk Wolfinger Surfzone
Processes Research Fund.



physics.ucsd.edu/~tzdyrski
http://physics.ucsd.edu/~tzdyrski
http://journals.ametsoc.org/doi/abs/10.1175/JPO2753.1
https://hal-insu.archives-ouvertes.fr/docs/00/30/17/94/PDF/npg-2-280-1995.pdf
https://hal-insu.archives-ouvertes.fr/docs/00/30/17/94/PDF/npg-2-280-1995.pdf
https://arxiv.org/abs/flu-dyn/1911.07879

