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Effects of dissipation on solitons in the hydrodynamic regime of graphene
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We use hydrodynamic techniques to analyze the one-dimensional propagation of solitons in gated graphene on
an arbitrary uniform background current. Results are derived for both the Fermi liquid and Dirac fluid regimes.
We find that these solutions satisfy the Korteweg–de Vries–Burgers equation. Viscous dissipation and Ohmic
heating are included, causing the solitons to decay. Experiments are proposed to measure this decay and thereby
quantify the shear viscosity in graphene.
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I. INTRODUCTION

Graphene offers a promising platform to realize and ex-
plore the hydrodynamics of electrons [1]. Graphene serves
as an excellent model system for theorists due to its simple
electronic band structure; likewise, it is utilized by experi-
mentalists for the relative ease of manufacturing pure samples.
In certain thermodynamic regimes, the electrons in graphene
become strongly interacting; hydrodynamics is a useful tool
to study strongly interacting systems not amenable to or-
dinary perturbation methods. Hydrodynamics is applicable
when systems rapidly thermalize and when both the mean-
free path (lee) and mean-free time (τee) are short compared
to the relevant length and time scales of the problem [2].
When a system is in this regime, the main observables are
conserved quantities: these are precisely the objects tracked
by hydrodynamics.

Graphene has two different hydrodynamic regimes. When
the chemical potential μ is much larger than the temperature,
kBT � μ, graphene behaves like an ordinary conductor and is
described by Fermi liquid theory. First discovered by Landau
[3] in 1959, Fermi liquid theory treats the electrons as a
noninteracting Fermi gas and then turns on interactions adia-
batically; thus, Fermi liquids exhibit weakly interacting quasi-
particles. The excitations, no longer pure electron states, are
instead described as quasiparticles. Though weak interactions
imply long mean-free paths, graphene can actually exhibit hy-
drodynamic effects in this regime. The electrons in graphene
only weakly interact with phonons (which typically disrupt
the hydrodynamic signature), so it is still possible to have
lee � lphonon. Likewise, graphene samples can be made very
pure; therefore, the impurity scattering distances can be made
large compared to the mean-free path as well (lee � limp).

In the opposite limit—i.e., when μ � kBT —graphene en-
ters a strongly coupled state known as a Dirac fluid (also
known as a “quantum critical regime”). In the Fermi liq-
uid regime, the presence of a Fermi surface imposes strong
kinematic constraints on the possible scattering pathways;
this prevents electrons far from the Fermi surface from in-
teracting strongly. However, near charge neutrality, the Fermi
surface shrinks, allowing electrons to interact strongly. The
bare coupling constant α0 gives a measure of this interaction

strength. In the Dirac regime of graphene, α0 can be of order
unity; renormalization reveals the coupling to be marginally
irrelevant, but for many laboratory conditions, it can still be on
the order of 0.1–0.5: see Lucas and Fong [1] for more details.
This strong coupling makes Dirac fluids ideal candidates for
hydrodynamic analysis.

A hydrodynamic analysis of electron motion in graphene
is governed by a number of phenomenological parameters. A
derivative expansion can be utilized to derive the hydrody-
namics equations [1]. The first-order corrections contain three
such parameters: the shear viscosity η, the bulk viscosity ζ ,
and the “intrinsic” conductivity σQ. These cannot be predicted
from the hydrodynamic theory and must be measured or
calculated microscopically.

A number of experiments have measured the value of in-
trinsic conductivity [4,5]. Similarly, there have been a number
of experimental proposals [6–9] for measuring η. While there
have been a few measurements [10,11] of η in the Dirac
regime, many of the proposals—such as negative nonlocal
resistance measurements [8]—only apply to the Fermi regime
[1]. Therefore, different hydrodynamic predictions would be
useful for investigating η in Dirac fluids.

Solitons—disturbances that propagate without changing
shape, even after interacting with each other—serve as pro-
totypical hydrodynamics phenomena amenable to analytic
tools. Solitons are made possible when dispersion balances
focusing-nonlinearities. Graphene’s hydrodynamic regime
supports collective electron/hole sound waves called “first-
sound” modes [12] or “demons” [13]; these sound modes
can become solitons if dispersion balances focusing. Akbari-
Moghanjoughi [14] analyzed solitons and periodic waves in
both the two- and three-dimensional (2D and 3D) completely
degenerate (T = 0) Fermi regimes. Solitons are permitted due
to the inherently nonlinear nature of the hydrodynamic equa-
tions; to capture this behavior, a Bernoulli pseudopotential
was used to analyze the fully nonlinear equations. However,
while this method predicted some parameters—such as min-
imum propagation speeds—it did not generate an analytic
expression for the soliton’s profile.

A different approach to studying solitons was presented
by Svintsov et al. [15] using standard perturbation the-
ory. This produced a Korteweg–de Vries (KdV) equation
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to describe the solitons’ propagation and generated analytic
approximations to the disturbances’ shapes. Unlike the anal-
ysis of Akbari-Moghanjoughi [14], this linearized approach
lacked a dispersive term to balance the nonlinearities. Instead,
the graphene was placed on a gated substrate; this provided a
weak dispersive force that permitted the formation of solitons.

While the analysis of solitons by Svintsov et al. [15]
provided a more concrete result, it was limited to inviscid
Fermi liquids. The present study will extend the results to
include the Dirac regime as well. Whereas Svintsov et al. [15]
used kinetic theory, we will instead treat the system using a
systematic hydrodynamic expansion. Additionally, this paper
will extend the results of both Svintsov et al. [15] and Akbari-
Moghanjoughi [14] by including the effects of dissipation.
This allows us to propose new experiments to measure the
viscosity of the electron fluid. The derivation presented here is
applicable to either the Dirac (μ � kBT ) or Fermi (kBT � μ)
regime, though it is unable to interpolate between the two.
Nevertheless, our proposal offers an advantage over transport
measurements in that its interpretation is less theory-laden.

In Sec. II we will derive the governing equations. Sec-
tion III will be devoted to the subtle aspects of normalization.
Next, Sec. IV will detail the perturbation expansion for the
special case of stationary solitons. Section V extends the
analysis to the more general case of solitons on an arbitrary
background flow. We will provide a short analysis of the
results in Sec. VI. Finally, in Sec. VII, we will detail po-
tential experimental setups using these solitons to measure
graphene’s viscosity.

II. GOVERNING EQUATIONS

The electrons in graphene satisfy a pseudorelativistic dis-
persion relation [1]

ε(p) = ±vF |p|, (1)

with p the momentum, vF ≈ c/300 the Fermi velocity, and
ε(p) the energy density. This equation is valid near a Dirac
point at p = 0, and deviates from linearity when |p|a/h̄ ≈ 1/2
with a the distance between adjacent carbon atoms in the
graphene.

Given the pseudorelativistic dispersion, it is natural to
write the conserved currents in relativistic notation with
xμ = (vFt, x)μ and ∂μ = (∂t/vF ,∇)μ. Ignoring impurity and
phonon scattering, the equations of motion are [1]

∂μJμ = 0, (2)

∂μT μν = 1

vF
F νμJμ. (3)

Here, T μν is the energy-momentum tensor, and Fμν is
the electromagnetic tensor (including self-interactions). Ad-
ditionally, Jμ is the charge 4-current [16]. Note that we
will be using Gaussian units with e = |e| positive. Finally,
we will include a factor of vF in the timelike components
of 4-vectors, like xμ = (vFt, x)μ, so that the metric gμν =
diag(−1, 1, 1, 1)μν is dimensionless.

It is often preferable to write these equations in terms
of more conventional quantities such as the fluid 3-velocity
u and the (rest-frame) number density of charge carriers,

n = (nel − nhol), with nel (nhol) the number density of elec-
trons (holes). To do so, Jμ and T μν are expanded in the
small parameter leeδ. In this equation, lee is the electron-
electron scattering mean free path and δ is a characteristic
inverse length scale of the observables. Since δ ∼ ∂ (with the
partial derivative acting on slow observables), this is called the
derivative expansion: see Lucas and Fong [1] for more details.

The expansions for T μν and Jμ become unwieldy at higher
orders, but truncating at order leeδ [17] we find [1]

Jμ = −enuμ + σQ

e
Pμν

(
∂νμ − μ

T
∂νT + eFνρuρ

)
, (4)

T μν = (ε + P)
uμ

vF

uν

vF
+ Pgμν − ηPμρPνα

(
∂ρuα + ∂αuρ

− 2

d
gρα∂βuβ

)
− ζPμν∂αuα, (5)

with ε the energy density, P the pressure, μ the chemical
potential, and T the temperature in the rest frame.

We have defined the spacelike projection operator Pμν :=
gμν + uμuν/v2

F and used uμuμ = −v2
F to write the 4-velocity

as uμ = γ (vF , u) with γ = 1/
√

1 − (|u|/vF )2 a Lorentz fac-
tor. Further, we have chosen the Landau frame, where

uμJμ = env2
F and uμT μν = −εuμ. (6)

It is sometimes more instructive to write out 4-vectors in
terms of their 3-vector and timelike components. For instance,
Jμ is

J0 = −γ envF + σQ

e

[
T γ 2

vF

( |u|2
v2

F

∂

∂t
+ u · ∇

)(
μ

T

)

+ γ e
E · u
vF

]
, (7)

J = −γ enu + σQ

e

[
T

(
∇ + γ 2 u

v2
F

D

)(
μ

T

)

+ γ e

(
E + u

vF
× B

)]
, (8)

where D := ∂t + u · ∇ is a material derivative.
To facilitate comparison with the existing literature, it

is useful to rewrite the spacelike components as vF ∂νT iν −
ui∂νT 0ν = vF FμiJμ − uiFμ0Jμ. Thus, our system becomes

∂μJμ = 0, (9)

∂νT 0ν = Fμ0Jμ, (10)

vF ∂νT iν − ui∂νT 0ν = vF FμiJμ − uiFμ0Jμ. (11)

A. Ideal fluid

It is illuminating to temporarily consider the dissipationless
case σQ = η = ζ = 0. We are then able to write Eqs. (9)–(11)
in 3-vector notation as

∂

∂t
(γ n) + ∇ · (γ nu) = 0, (12)

∂

∂t
[γ 2(ε + P)] + ∇ · [γ 2(ε + P)u] − ∂P

∂t
= −γ neE · u,

(13)
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γ 2 (ε + P)

v2
F

(
∂u
∂t

+ u · ∇u
)

+
(

u
v2

F

∂P

∂t
+ ∇P

)

= −neγ

(
E + u

vF
× B − u

vF
E · u

vF

)
. (14)

Then, it is clear that Eqs. (9)–(11) represent charge, energy,
and 3-momentum conservation, respectively.

B. Phonons and heat flow

We have neglected the interactions (emission, absorption,
and scattering) with phonons in our governing equations,
Eqs. (9)–(11); we will now attempt to justify that choice. First,
we consider the momentum equation (11).

The hydrodynamic regime is relevant when the electron-
electron interaction time tee is the smallest timescale: tee �
tchar � td with tchar the soliton’s propagation timescale and td
its dissipation timescale. Following the standard prescription
[1,5,18,19], we will neglect phonon-induced momentum re-
laxation in the momentum conservation equation, Eq. (11), if
the phonon-induced momentum-relaxation time t (p)

e-ph is much
longer than the other timescales of interest, tee � td � td �
t (p)
e-ph.

To support the claim that such a regime exists, we now
present sample numerical values that satisfy such a timescale
hierarchy. Nevertheless, we stress that this is simply an ex-
ample; the derivation in the remainder of the paper will
be valid over a wide range of experimental parameters; see
Appendix B for further details.

The electron-electron scattering time in the Dirac regime
is [1]

tee ∼ 0.1 ps

(
100 K

T

)
. (15)

At T = 60 K, this gives tee = 0.17 ps. Using the sample
values chosen in Sec. VII, we find (cf., Sec. VII B) a char-
acteristic propagation time of tchar = 6.5 ps. In that same
section, we calculate a decay time of td ≈ 44 ps. Finally,
the electron-phonon momentum-relaxation time for acoustic
phonons (with speed vs = 2 × 104 ms−1) is given by [20]

t (p)
e-ph ∼ 10 ps

T/100 K
√

n/(1012 cm−2)
. (16)

This yields t (p)
e-ph = 280 ps. Therefore, we see that we have

tee � tchar � td � te-ph. Thus, with the experimental values
chosen here, phonon-induced momentum relaxation can be
neglected from Eq. (11).

Importantly, as shown in recent experiments [5], there does
appear to exist an experimentally realizable regime where the
requisite hydrodynamic condition tee � tchar � t (p)

e-ph holds.
Indeed, these experiments motivate us to suggest that such
an approximation might be valid. Nevertheless, it would be
useful to have a more refined estimate of the rate at which
momentum and energy are lost to phonons.

1. Isothermal versus adiabatic

Now we consider the effect of phonons on the energy
conservation equation (10). The energy conservation equation
implicitly assumes our system is adiabatic: that is, the absence

of energy sources/sinks presumes that heat neither enters nor
leaves the system. In general, we could include terms (such as
coupling to phonons) representing heat gain/loss. Instead, we
could consider the opposite limit involving rapid heat trans-
fer with the environment resulting in isothermal conditions.
Under this assumption, the energy conservation equation is
no longer needed; rather, the thermodynamic relations of
Sec. II C could be used to relate our dynamic variables P
and n, since T would no longer be dynamical. Therefore (as
in the case of Newton’s calculation of sound-speed in air),
it is important to determine whether adiabatic or isothermal
conditions are more applicable.

The most likely thermalization pathway would involve en-
ergy loss to phonons: the soliton’s location in the middle of the
sample minimizes heat advection through the edge contacts;
similarly, radiative cooling is far too slow to thermalize the
system on relevant timescales [21]. Indeed, if the graphene is
placed on a substrate, phonons are responsible for the majority
of the heat transfer to the environment [22,23].

For the isothermal condition to be applicable, the electrons
must quickly lose energy to the environment: that is, the
energy-relaxation time t (ε)

e-ph must satisfy t (ε)
e-ph � tee � tchar �

t (p)
e-ph. However, single-phonon interactions are unlikely to ex-

tract heat quickly enough. Each phonon with wave number
k carries a momentum h̄k while the electron fluid has mo-
mentum density u(ε + P)/v2

F ∼ uε/v2
F . Likewise, phonons

have energy h̄kvs with sound-speed vs, while the electrons
have energy density ε. Recall that we require the electron-
electron momentum exchange rate ṗee to be much greater
than the electron-phonon momentum relaxation rate ṗe-ph in
order for hydrodynamics to be valid: ṗee � ṗe-ph. However,
multiplying by vs and rewriting in terms of the energy ex-
change rates yields ε̇eeuvs/v

2
F � ε̇e-ph. Given that vs ≈ 2 ×

104 m s−1 � vF for acoustic phonons [24] and u ≈ 4.0 ×
105m s−1 ∼ vF for our system, we see that ε̇ee � ε̇e-ph. Hence,
if phonon-induced momentum relaxation can be neglected, so
can phonon-induced energy relaxation.

For isothermal conditions to be applicable, other ther-
malization pathways must be available. For instance, mul-
tiphonon supercollisions [24] can increase the energy flux
relative to the momentum flux. However, under the assump-
tion of weak phonon coupling, we can ignore the influ-
ence of multiphonon processes. Therefore, in the absence of
other energy-relaxation mechanisms, it appears that adiabatic
conditions are more appropriate for our system, with tee �
tchar � t (p)

e-ph � t (ε)
e-ph.

In the body of this paper, we will use isothermal conditions:
these are more common in the literature [14,15] and are some-
what simpler. Nevertheless, adiabatic conditions appear to be
more practical and are used for the derivation in Appendix C.

C. Thermodynamics

Currently, our system, Eqs. (9) and (11), is underdeter-
mined. This can be remedied by including a thermodynamic
equation of state to relate ε and P.

In graphene, the photonlike dispersion relation for the
electrons gives the pressure as P = εd , with d the dimension
of the system (d = 2 for graphene) [1]. Graphene has a natural
energy scale at which the band structure’s curvature becomes
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relevant. However, for temperatures much lower than this
scale, � ∼ 104 K, there are only two energy scales in the
problem: kBT and μ. Therefore, from dimensional analysis,
the pressure must be expressed as [1]

P(μ, T ) = (kBT )d+1

(h̄vF )d
F

(
μ

kBT

)
(17)

for a function F subject to constraints imposed by the positiv-
ity of the entropy density s = ∂P/∂T � 0. Additionally, since
our system is charge conjugation symmetric with μ → −μ,
F must be an even function.

In the Dirac regime (μ � kBT ), P can be expanded as

P(μ, T ) = (kBT )d+1

(h̄vF )d

[
CD

0 + CD
1

(
μ

kBT

)2

+ CD
2

(
μ

kBT

)4

+ · · ·
]
. (Dirac: 18)

Similarly, the carrier density can be expressed as

n(μ, T ) = ∂P

∂μ
= (kBT )d

(h̄vF )d

μ

kBT

[
2CD

1 + 4Cd
2

(
μ

kBT

)2

+ · · ·
]
.

(Dirac: 19)

Instead, in the Fermi regime (μ � kBT ), we can write P as

P(μ, T ) = |μ|d+1

(h̄vF )d

[
CF

0 + CF
1

(
kBT

μ

)2

+ CF
2

(
kBT

μ

)4

+ · · ·
]
. (Fermi: 20)

Likewise, the carrier density is given by

n(μ, T ) = (d + 1)
|μ|d sgnμ

(h̄vF )d

[
CF

0 + d − 1

d + 1
CF

1

(
kBT

μ

)2

+ d − 3

d − 1
CF

2

(
kBT

μ

)4

+ · · ·
]
. (Fermi: 21)

Throughout the remainder of this paper, we will generically
write C0, C1, etc.; the current regime of interest will determine
whether to use CD or CF . Explicit expressions for these coef-
ficients are given in Appendix A. It is important to reiterate
that, for our isothermal system, T is not a dynamical quantity
dependent on space or time, but is merely a parameter.

D. Electrostatics

While our electron fluid moves in d-dimensions (d = 2
for graphene), we will assume the electromagnetic field prop-
agates in d + 1 dimensions (i.e., 3-space for graphene, as
usual). We are only concerned with the electric potential φ

since the magnetic terms are smaller by a factor of vF /c ≈
1/300. The self-interaction of the charge distribution n(x, t )
generates an electric potential in the Lorenz gauge as

− 1

c2

∂2φ

∂t2
+ ∇2φ = −4πJ0 = −4π [−en(x, t )γ ]. (22)

Note that we are using the (d + 1)-dimensional Laplacian.
Neglecting the 1/c2 time derivative gives Poisson’s equation.
For instance, with d = 2 this gives

φ(x, t ) = −e
∫

n(y, t )γ

|x − y| d3y. (23)

Making the quasistatic approximation ∂t/∂x � c—so we can
neglect electrodynamic effects like ∂t A—we find

E = e
∫

(x − y)n(y, t )γ

|x − y|3 d3y. (24)

This equation is highly nonlocal in n, and using it in the
energy-momentum tensor equation would produce a compli-
cated integrodifferential equation. While we can deal with this
(via a Fourier transform) for the linear approximation, going
to higher orders would necessarily involve convolutions.

The main problem with this setup is that the Coulomb
force is long-ranged; we can simplify this by using conduct-
ing gates. Since the electric-field lines must be normal to
conductors, placing conductors directly above and below the
graphene will force E to be nearly normal to the graphene
[15,25]. Therefore, the x-component Ex will necessarily be
small and can be handled perturbatively.

We impose gates a distance d1 above and d2 below the
sample and fill the intervening space with a dielectric of
relative permittivity κ . This gives a potential (in d = 2) of the
form [15]

φ = −αh̄vF d1d2

eκ (d1 + d2)

(
1 + d1d2

3

∂2

∂x2

)
(γ n) + O(di∂x )4. (25)

Naturally, the electric field is given by the negative gradient
of φ. Here, we have assumed that di∂x � 1. Furthermore,
we have replaced 4πe2/h̄vF with α(T ), the renormalized
coupling constant; this accounts for the effect of screening and
is given by [1]

α(T ) = 4

(4/α0) + ln (104 K/T )
, (26)

with α0 ≈ 1 depending on the graphene’s substrate. For the
Dirac regime at T = 60 K considered throughout this paper,
this gives α ≈ 0.439.

For convenience, we will define the collection of
coefficients

A := αh̄vF d1d2

κ (d1 + d2)
, (27)

so that the potential is given as

φ = −A

e

(
1 + d1d2

3

∂2

∂x2

)
(γ n) + Odi∂

4
x . (28)

While Eq. (27) only applies for d = 2, we will use φ given
by Eq. (28) for arbitrary dimension, with an appropriately
chosen A.

The first term on the right-hand side of Eq. (28) represents
the electric potential from a uniform charge density. The
second term is a weakly nonlocal correction that causes a
weak dispersion.
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III. DIMENSIONS, UNITS, AND REGIME OF INTEREST

It will be helpful in the following sections to be rather pre-
cise in specifying a nondimensionalization scheme. For con-
venience, we will choose units where kB = h̄ = vF = e = 1.
We still have one dimension unspecified; in order to fully
specify our unit system, we will choose an arbitrary reference
length lref = 50 nm; this is chosen so that T is nondimension-
alized to roughly unity (see below) [26].

In later sections, we will be performing a perturbation
expansion to solve the nonlinear system of equations. There,
we will use expansions of the form f = f0 + ε f1 + f2ε

2 +
· · · with ε � 1 a small parameter representing the size of
perturbations.

Choosing the order of the problem’s variables is very
important. When collecting terms in perturbation theory, we
assume that all variables and constants are order O(1); the
relative magnitude of terms is given solely by powers of ε.
Let us emphasize that, unlike the choice of parameters to
normalize above, this choice of nondimensionalization is
physically relevant and determines our regime of interest.

Nondimensionalization sets the relative size of different
terms and corresponds to a specification of our location in
parameter space. Indeed, this choice dictates which terms and
processes are relevant and which are negligible. Equivalently,
this process can be viewed through the lens of dimensional
analysis. Our system has 17 variables (5 dynamic: n, u, ε, P,
and μ; 11 static: x, t , kBT , di, κ , σQ/e2, η, ζ , h̄, vF , and lref;
and the previously defined perturbation scale ε). In total, there
are 3 independent physical units (mass, length, and time).
Therefore, the Buckingham Pi theorem implies there are 14
dimensionless parameters.

However, these 14 dimensionless parameters are not all
independent. Our 3 thermodynamic equations (ε = Pd , as
well as the definitions of P and n) reduce this number to
11. Furthermore, we have not yet specialized to solitons: in
Appendix B, we will use dominant balance to impose 4 ad-
ditional restrictions arising from our conservation equations,
Eqs. (9)–(11). This leaves a total of 7 independent nondi-
mensional parameters: ε, m, p, q, O(σQh̄), O(ηld

ref/h̄), and
O(ζ ld

ref/h̄), as defined in Appendix B [27].
Naturally, investigations of the Fermi and Dirac regimes

entail different nondimensionalizations. Additionally, even
without a set regime, there are different nondimensionaliza-
tion choices highlighting different areas of parameter space.
Appendix B outlines a general nondimensionalization using
dominant balance that encompasses various parameter spaces
in both the Dirac and Fermi regimes. For concreteness, we will
examine one particular nondimensionalization in the Dirac
regime in this section. Nevertheless, the equations and solu-
tions generated in the remainder of the paper are largely sim-
ilar for both the Dirac and Fermi regimes; we will explicitly
highlight the few terms that do differ between the two regimes.
The nondimensionalization utilized in the Fermi regime is laid
out in Appendix B 1.

A. Dirac nondimensionalization

We will denote nondimensional variables with a caret.
Restricting to the Dirac regime and using a bit of foresight,
we will choose to nondimensionalize the dynamical and

thermodynamic variables as follows:

n = ε (d+2)/4n̂l−d
ref , u = ûvF ,

ε = ε (d+1)/4ε̂h̄vF l−d−1
ref , P = ε (d+1)/4P̂h̄vF l−d−1

ref ,

μ = ε3/4μ̂h̄vF l−1
ref , and T = ε1/4T̂ h̄vF l−1

ref k−1
B .

(29)

Here, we made use of the fact that we are in the Dirac regime
(μ/T � 1) and the thermodynamic equations of Sec. II C by
ensuring

O
(
nld

ref

) = O

[
μld+1

ref

h̄vF

(
T lref

h̄vF

)d−1
]

(30)

and

O

(
Pld+1

ref

h̄vF

)
= O

(
kBT lref

h̄vF

)d+1

. (31)

Note that we took μ to be small but finite; as we will see
later, taking μ to be identically zero causes disturbances to
be “frozen” in place.

The gating distance will be normalized as di =
lrefd̂iε

−(d+3)/4. The electrostatic coefficient A [defined for
d = 2 in Eq. (27)] is normalized as A = Âε−(d+3)/4h̄ld−1

ref vF .
The dissipative “intrinsic” conductivity σQh̄/e2 represents

another nondimensional parameter in our problem. In the
hydrodynamic regime for d = 2, we have [28]

σQ

e2
≈ 0.760

2π h̄α(T )2
, (32)

with α(T ) given by Eq. (26). We see that for T ≈ 60 K,
we have σQ = 0.20e2/h̄. Therefore, σQh̄/e2 is now a second
small parameter (in addition to ε). To make progress with
our perturbation expansion, we need to fix the magnitude of
σQh̄/e2 relative to ε. Since we will later choose ε ∼ 0.1, we
see that σ̂Q = 0.20 ≈ √

0.1. Thus, we will nondimensionalize
σQ as σQ = σ̂Qε1/2e2l2−d

ref /h̄.
According to Lucas and Fong [1], near the charge neutral-

ity point with d = 2, the shear viscosity is given by

η ≈ 0.45
(kBT )2

h̄v2
F α(T )2

. (33)

For T ≈ 60 K, we have ηl2
ref/h̄ = 1.1. Therefore, we will

choose η = ε0η̂h̄l−d
ref . Though the bulk viscosity ζ is expected

to be much smaller than η (due to approximate scale in-
variance), our setup is only sensitive to ζ + 2η(1 − 1/d );
therefore, we will simply choose ζ = ε0ζ̂ h̄l−d

ref as well. We
can safely take ζ̂ → 0 without affecting the derivation.

In performing a derivative expansion, it is assumed that the
relevant variables (n, ε, etc.) vary on length scales ξ � lee.
If we normalize the length scales by ξ as x = x̂ξ , then the
derivatives are normalized according to Appendix B as

∂

∂x
= 1

ξ

∂

∂ x̂
= lref

ξ

1

lref

∂

∂ x̂
= ε (d+5)/4 1

lref

∂

∂ x̂
. (34)

For the remainder of this paper, carets denoting normalized
variables will be dropped for convenience.

Note that, in addition to our perturbation expansion in
terms of ε, we have already made use of two other expan-
sions: one for φ expanding in (∂xdi )2 and one for P(μ, T )

235435-5



THOMAS ZDYRSKI AND JOHN McGREEVY PHYSICAL REVIEW B 99, 235435 (2019)

expanding in (μ/T )2. Using these normalizations, we see that
both (∂xdi )2 and (μ/T )2 are of order ε, so all perturbation
expansions in the problem have the same accuracy.

IV. PERTURBATION EXPANSION

To analyze Eqs. (9)–(11), it will be useful to expand the
dependent variables in a perturbation series:

u = u0 + εu1 + ε2u2 + · · · , (35)

P = P0 + εP1 + ε2P2 + · · · , (36)

n = n0 + εn1 + ε2n2 + · · · . (37)

A. Perturbative thermodynamics

We will be using the thermodynamic relationships of
Sec. II C to write μ and T in terms of n and P; however, since
T is nondynamical, it will only have a constant T0 component,
but not a T1(x, t ) contribution. It is useful to define m as
the order of (μ0/T0)2; that is, εm := O[μ/(kBT )]2. For the
nondimensionalization specified in Sec. III, m = 1.

Expanding the thermodynamic variables and collecting
powers of ε yields the following relations for the Dirac
regime:

P0 = T d+1
0 C0, (Dirac: 38)

n0 = 2T d−1
0 μ0C1, (Dirac: 39)

P1 = P0

[
C1

C0

(
μ0

T0

)2

δm,1

]
, (Dirac: 40)

n1 = n0

[
μ1

μ0
+ 2

C2

C1

(
μ0

T0

)2

δm,1

]
, (Dirac: 41)

P2 = P0

[
T2

T0
(d + 1)

(d + 1)d

2
+ 2

C1

C0

μ1

μ0

(
μ0

T0

)2

δm,1

+ C2

C0

(
μ0

T0

)4

δm,1 + C1

C0

(
μ0

T0

)2

δm,2

]
, (Dirac: 42)

n2 = n0

[
μ2

μ0
+ T2

T0
(d − 1) + 6

C2

C1

μ1

μ0

(
μ0

T0

)2

δm,1

+ 3
C3

C1

(
μ0

T0

)4

δm,1 + 2
C2

C1

(
μ0

T0

)2

δm,2

]
, (Dirac: 43)

with δa,b the Kronecker delta function.
Similarly, for the Fermi regime, we find

P0 = |μ0|d+1C0, (Fermi: 44)

n0 = |μ0|d sgn(μ0)C0(d + 1), (Fermi: 45)

P1 = P0

[
μ1

μ0
(d + 1) + C1

C0

(
T0

μ0

)2

δm,−1

]
, (Fermi: 46)

n1 = n0

[
μ1

μ0
d + C1

C0

d − 1

d + 1

(
T0

μ0

)2

δm,−1

]
, (Fermi: 47)

P2 = P0

[
μ2

μ0
(d + 1) + μ2

1

μ2
0

(d + 1)d

2

+ C1

C0
(d − 1)

μ1

μ0

(
T0

μ0

)2

δm,−1 + C2

C0

(
T0

μ0

)4

δm,−1

+ C1

C0

(
T0

μ0

)2

δm,−2

]
. (Fermi: 48)

For leading order,

n2 = n0

[
μ2

μ0
d + μ2

1

μ2
0

d (d − 1)

2

+C1

C0

(d − 1)(d − 2)

d + 1

μ1

μ0

(
T0

μ0

)2

δm,−1

+ C2

C0

d − 3

d + 1

(
T0

μ0

)4

δm,−1 + C1

C0

d − 1

d + 1

(
T0

μ0

)2

δm,−2

]
.

(Fermi: 49)

Using these equations, we can now write μ and P in terms
of n at each order. In particular, we find

P1

P0
= n1

n0
K0 + C1

C0

(
μ0

T0

)2m(
δm,1 + 1

d
δm,−1

)
. (50)

Here, we have defined K0 as

K0 =
{

0, m > 0 (Dirac regime),

(d + 1)/d, m < 0 (Fermi regime).
(51)

As a side note, it is straightforward to show with thermody-
namic identities that K0 is the leading-order term in the ratio
of bulk modulus B to pressure P; that is, K0 = B0/P0.

B. Conservation equations

First, let us investigate a scenario with a constant, uni-
form background flow u0 	= 0 chosen such that the perturba-
tions are stationary in the laboratory frame. This will both
simplify the mathematics and be experimentally interesting.
To accomplish this, we will only permit variations on long
timescales (this will be important when including dissipation).
Mathematically, we accomplish this by normalizing the time
variable as t = εt̂1ξ/vF such that ∂t1 = εO(∂x̂ ).

Expanding the governing equation, we find the following:
Leading order:

∂

∂x
(γ 2n0u1 + u0n1) = 0, (52a)

∂

∂x

[
γ P1 + u0γ

3(ε0 + P0)u1 + γ An0n1 + γ 3An2
0u0u1

] = 0. (52b)
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First-order correction:

∂

∂x
(γ 2n0u2 + u0n2)

= −γ 2[u0γ
2(2 + u2

0

)
n0u1 + n1 + n0u0u1

]∂u1

∂x
− γ 2u1

∂n1

∂x
+ γ u0AσQ

∂2n1

∂t0∂x
+ γ AσQ

∂2n1

∂x2

+ γ 3u0AσQn0

(
∂2u1

∂x2
+ u0

∂2u1

∂t0∂x

)
+ �(−m)γ σQ

∂2

∂x2

(
μ1 − T0

μ0
T1

)
, (53a)

∂

∂x

[
γ P2 + u0γ

3(ε0 + P0)u2 + γ An0n2 + γ 3An2
0u0u2

]
= −γ 3

[
u0(ε1 + P1) + (

1 + u2
0

)
u1γ

2(ε0 + P0)
]∂u1

∂x
− An1γ

∂n1

∂x
+ An0u0u1γ

3 ∂n1

∂x
− γ An0

d1d2

3

∂3n1

∂x3

− An2
0

(
1 + u2

0

)
u1γ

5 ∂u1

∂x
− An2

0u0γ
3 d1d2

3

∂3u1

∂x3
− An0u0u1γ

3 ∂n1

∂x
− 2An0u0n1γ

3 ∂u1

∂x

+ γ 4

[
ζ + 2η

(
1 − 1

d

)](
u2

0
∂2u1

∂t2
0

+ 2u0
∂2u1

∂t0∂x2
+ ∂3u1

∂x2

)
. (53b)

Here, we have defined γ = 1/
√

1 − u2
0 (with vF = 1) and

used the electrostatic coupling A according to Eq. (28). Addi-
tionally, we have used the Heaviside function

�(−m) =
{

0, m > 0 (Dirac regime),

1, m < 0 (Fermi regime).
(54)

C. Leading-order equations

Using the thermodynamic relation ε = Pd , the leading-
order equations can be manipulated as

γ 2d

(
An0 + P0K0

n0

)[
Eq. (52a)

]− γ du0
[
Eq. (52b)

]
yielding

0 = γ 2d
{
An2

0 + γ 2P0
[
K0 − u2

0(d + 1)
]}

u1. (55)

We want nontrivial perturbations u1 	= 0, so we require the
terms in square brackets to vanish. We see that this gives an
equation for u0 required to make the leading-order solutions
time-independent:

u0 = ±
√

[K0/(d + 1)] + [
An2

0/P0(d + 1)
]

1 + [
An2

0/P0(d + 1)
] . (56)

It is easy to check that u2
0 < 1 for d 	= 1; this is required,

otherwise γ = 1/
√

1 − u2
0 would be imaginary.

Additionally, if we restrict to solutions bounded in x, we
can require each term inside ∂x from Eqs. (52a) and (52b) to
be zero, giving

u1 = − u0

γ 2n0
n1 + U1. (57)

Here, we have included a constant, uniform current
U1(x, t0, t1) = U1; this will allow us—at the next order—to

cancel the disturbance’s propagation speed (similar to our use
of u0 at this order).

D. First-order corrections

Now, we can do the same for the first-order corrections.
Manipulating them as before,

γ 2d

(
An0 + P0K0

n0

)
[Eq. (53a)] − γ du0[Eq. (53b)]

gives

γ 2d
{
An2

0 + γ 2P0
[
K0 − u2

0(d + 1)
]}

u2 = RHS. (58)

Here, the right-hand side (RHS) depends only on n1, u1, ε1,
and P1. However, inserting our solution for u0 causes the
left-hand side to vanish, giving us our desired compatibility
condition on n1. Thus, we have the compatibility equation

A∂n1

∂t1
+ F ∂n1

∂x
+ Bn1

∂n1

∂x
+ C ∂3n1

∂x3
= G ∂2n1

∂x2
, (59)

with

A = 2γ 2 P0d

n0
u2

0(d + 1 − K0), (60a)

B = −γ 2 P0

n2
0d

u0
{
d2u2

0[4(d + 1) − K0(d + 3)]

+ (d + 1)�(−m) − K0d2} (60b)

C = −Ad
d1d2

3
n0u0, (60c)

F = γ 2 P0d

n0
u0

{
2U1γ

2(d + 1 − K0)u0

+ C1

C0

(
μ0

T0

)2m[
u2

0(d + 1)

(
1

d
δm,−1 + δm,1

)

−
(

d − 1

d2
δm,−1 + 2δm,1

)]}
, (60d)
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G = γ 3

n0

⎛
⎜⎜⎝σQγ 2

(
P0

n0

)2

u2
0(d + 1)(d + 1 − K0)

×

⎡
⎢⎢⎣du2

0 + �(−m) − K0
d

d + 1︸ ︷︷ ︸
=0

⎤
⎥⎥⎦

+ du2
0

[
ζ + 2η

(
1 − 1

d

)]⎞⎟⎟⎠. (60e)

This is known as the KdV-Burgers (KdVB) equation. Note
the underbraced term in G vanishes in both the Dirac and
Fermi regimes.

E. Ideal fluid

Before tackling the full KdVB equation, it is beneficial to
consider the simpler inviscid problem with σQ = η = ζ = 0.
In this case, we find G = 0 and the KdV-Burgers equation
reduces to the KdV equation. The KdV equation has soliton
solutions of the form

n1(x, t1) = c1sgn(BC) sech2

{√
c1|B|
12|C|

×
[

x −
(

c1|B|
3|A| sgn(AC) + F

A

)
t1

]}
(61)

for arbitrary, order-1 constant c1 > 0.
Substituting the coefficients, we find

n = n0 + εc1sgn(BC) sech2

(
x + vt

W

)
, (62)

with

v = −ε

(
c1|B|
3|A| sgn(AC) + F

A

)
(63)

and

W =
√

12|C|
c1|B| . (64)

Let us seek a soliton that is stationary in the laboratory
frame; we have already accomplished ∂t0 n1 = 0 by a choice
of u0; we can similarly set ∂t1 n1 = 0 by an appropriate choice
of U1. If we choose U1 so that F = −c1B/3 sgn BC, then the
soliton is stationary:

n = n0 + εc1sgn(BC) sech2

(
x

W

)
. (65)

F. Dissipation

Now, we return to the full KdVB equation (59). It does
not appear that the KdV-Burgers equation with G 	= 0 has
an analytic, solitonic solution. However, if G � (A,B, C),
then an approximate solution is given by Eq. (62) but with

time-dependent c1, as described in Mei et al. [29]. For clarity,
we can factor out this smallness as G = δG̃ so that δ � 1 and
G̃ is the same order as A. Then, another short multiple scales
expansion for n1 can be done in δ = O(G/A). To be con-
sistent with our original perturbation series, we require that
ε � δ � 1.

As usual, we expand n1 as n1 = n(0)
1 + δn(1)

1 and ∂t1 =
∂τ0 + δ∂τ1 . Then, to leading order, the equation

L0n(0)
1 := A∂τ0 n(0)

1 + F∂xn(0)
1 + B

2
∂x
(
n(0)

1

)2
(66)

+ C∂3
x n(0)

1 = 0, (67)

where we have again defined the linear operator L1 acting on
n(1)

1 . This is the ordinary KdV equation; therefore, n(0)
1 has the

solution given by Eq. (61) with order-1 free parameter c1 > 0.
At next order in δ, we must allow the constant c1 to become

time-dependent on a slow timescale c1 = c1(τ1). Then, our
equation is

L1n(1)
1 := A∂τ0 n(1)

1 + F∂xn(1)
1 + B∂x

(
n(0)

1 n(1)
1

)+ C∂3
x n(1)

1

= −A∂τ1 n(0)
1 + G̃∂2

x n(0)
1 , (68)

where we have again defined the linear operator L1 acting
on n(1)

1 .
For certain inhomogeneous terms in Eq. (68), it is possible

to generate secular (i.e., unbounded) growth; since this is
clearly no longer a localized solution, we wish to avoid this.
Here, we will utilize a multiple scales approach, though it
will differ slightly from the method used in Sec. V since
the homogeneous operator L0 is nonlinear. Following the
example of Mei et al. [29], we note that L0 and −L1 are
adjoint: ∫

dx
(
n(1)

1 L0n(0)
1 + n(0)

1 L1n(1)
1

) = 0. (69)

Then, substituting the right-hand sides of Eqs. (67) and (68),
we get the compatibility condition∫

n(0)
1

(
A∂τ1 n(0)

1 − G̃∂2
x n(0)

1

)
dx = 0. (70)

Inserting the soliton solution for n(0)
1 , we get an equation for

c1(τ1):

ċ1 = −c2
1|B|G̃
|C|A

4

45
. (71)

Then, solving this equation and converting back to time t1
gives

c1(t1) = c1(0)

1 + t1
td

with td = 45A|C|
4c1(0)G|B| , (72)

with c1(0) the initial value of the parameter c1(t1). Recall that
this is derived under the assumption that ε � O(G/A) � 1.

Additionally, we can solve the KdV-Burgers equation nu-
merically for arbitrary G; this shows similar behavior to the
analytic approximation (cf., Figs. 1 and 2). That is, the soliton
slowly decays as it progresses.
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FIG. 1. Solitonic solution to KdV-Burgers. Values used were A = 0.88, B = −0.70, C = −0.060, F = −1.1, and G = 0.53 with the
height normalized to 4.0 × 108 cm−2. This choice of parameters gives a soliton propagating in the +x direction and a countercurrent u0 in the
−x direction (indicated by the arrow).

V. MULTIPLE SCALES EXPANSION

Now, we wish to study the previous solitonic solution in
more generality. Here, we will allow for an arbitrary uniform,
time-independent background current u0.

As we have seen previously, the nonlinearities affect the
propagation velocity v [cf., Eq. (63)]. This is an example of a
singular perturbation and requires the use of singular perturba-
tion theory. Singular methods such as Poincaré-Lindstedt are
only applicable to steady or periodic solutions. Since we are
interested in decaying solutions, we need to make use of the
method of multiple scales. Note that this approach is similar
to that employed by Akbari-Moghanjoughi [30] in the study
of partially degenerate electron-ion plasmas.

First, unlike the previous section, we will nondimensional-
ize the timescale so that ∂t = ∂x. Now, if we introduce a series
of timescales t0 = t , t1 = εt , t2 = ε2t, . . . each presumed in-
dependent, the chain rule gives

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ . . . . (73)

Further, we now assume that each variable is a function of all
time scales: n = n(x, t0, t1, t2, . . .).

If we again restrict to 1D motion and collect terms by
powers of ε, we get the following equations:

Leading order:

∂n1

∂t0
+ γ 2n0u0

∂u1

∂t0
+ u0

∂n1

∂x
+ n0γ

2 ∂u1

∂x
= 0, (74a)

γ 3(ε0 + P0)
∂u1

∂t0
+ γ u0

∂P1

∂t0
+ u0γ

3(ε0 + P0)
∂u1

∂x
+ γ

∂P1

∂x
+ An0γ

∂n1

∂x
+ An2

0u0γ
3 ∂u1

∂x
= 0. (74b)

First-order correction:

∂n2

∂t0
+ γ 2n0u0

∂u2

∂t0
+ u0

∂n2

∂x
+ n0γ

2 ∂u2

∂x
= RHS, (75a)

γ 3(ε0 + P0)
∂u2

∂t0
+ γ u0

∂P2

∂t0
+ u0γ

3(ε0 + P0)
∂u2

∂x
+ γ

∂P2

∂x
+ An0

∂n2

∂x
= RHS. (75b)

Again, we have used the electrostatic coupling A according to
Eq. (28). See Appendix D for the terms on the right-hand side.

Notice that, as is often the case for multiple scales analyses,
the linear operator acting on n1, u1, etc. in Eqs. (74a) and
(74b) is identical to the linear operator acting on n2, u2, etc.
in Eqs. (75a) and (75b). Furthermore, since this operator is
linear, we do not need to employ the operator formalism of
Sec. IV F, but can instead use a linear algebraic approach
similar to Sec. IV (with the addition of another timescale, t1).

A. Leading-order equations

Using ε = Pd and combining equations like

γ 2d

[
An0

∂

∂x
+ P0K0

n0

(
u0

∂

∂t0
+ ∂

∂x

)]
[Eq. (74a)]

− γ d

(
∂

∂t0
+ u0

∂

∂x

)
[Eq. (74b)]
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FIG. 2. Solitonic solution to KdV-Burgers showing decay as a
function of time. Values used were A = 0.88, B = −0.70, C =
0.060, F = −1.1, and G = 0.53 with the height normalized to 4.0 ×
108 cm−2.

gives

0 = γ 2d

(
−γ 2P0

(
d + 1 − u2

0K0
)∂2u1

∂t2
0

− 2γ 2P0u0(d + 1 − K0)
∂2u1

∂t0∂x

+ {An2
0 + γ 2P0

[−u2
0(d + 1) + K0

]}∂2u1

∂x2

)
. (76)

This wave equation has solutions f (x + v0t0) + g(x − v0t0)
with v0 given by

v
(±)
0 = −u0(d + 1 − K0)

d + 1 − u2
0K0

± 1

γ
(
d + 1 − u2

0K0
) (77)

×
√

K0(d + 1)

γ 2
+ An2

0

P0

(
d + 1 − u2

0K0
)
. (78)

We will take the (+) sign so that v0 = v
(+)
0 ; the other can

be recovered by taking u0 → −u0 and v0 → −v0. Further,
we restrict to unidirectional solutions u1(x, t0, t1) = f (x ±
v0t0, t1) for a definite choice of ±; here, we choose (+) as
well—the other propagation direction can be recovered by
taking v0 → −v0.

For stationary perturbations (v0 = 0), we can solve for u0

to recover the result from Sec. IV:

u0 = ±
√

[K0/(d + 1)] + [
An2

0/P0(d + 1)
]

1 + [
An2

0/P0(d + 1)
] . (79)

For reference, the velocity of propagation in the absence of a
background flow (u0 = 0) is

v0 = ±
√

1

d + 1

√
K0 + An2

0

P0
. (80)

In general, n1, u1, and P1 have traveling-wave solutions;
neglecting solutions of the form f (x − u0t0, t1) that are
simply advected by the background current, we find solutions

given by

n1(x, t0, t1) = n1(x + v0t0, t1) + F1(t1), (81a)

u1(x, t0, t1) = − (u0 + v0)

n0γ 2(1 + u0v0)
n1(x + v0t0, t1) + F2(t1).

(81b)

Here, we have arbitrary functions F1(t1) and F2(t2); by
imposing boundary conditions n1 = 0 at x = ±∞, we set
F1 = 0. We will allow U1(t2) := F2(t2) to remain arbitrary;
this uniform background current can be superimposed on the
soliton solution as in Sec. IV if desired [31].

Now, we can also see why it was important to take
μ0 � T0 small but finite. Had μ = 0 identically, then the
thermodynamic relations would require n0 = 0. Then, the
leading-order charge conservation equation (74a) would give
∂t0 n1 + u0∂xn1 = 0; i.e., charge-density perturbations are sim-
ply advected along by the background flow. That is, the
density perturbations lack any dynamic propagation and are
“frozen-in.” Since the other dependent variables are propor-
tional to n1, we see that P1 and u1 are similarly affected.
Hence, if we want a dynamic disturbance, we require μ0 	= 0;
intuitively, this is understandable as there are no net charge
carriers at the Dirac point.

B. First-order corrections

Now considering the first-order corrections, preventing
secular growth of the higher-order terms (i.e., n2, u2, etc.)
requires imposing a compatibility condition on the lower-
order terms (i.e., n1, u1, etc.). We can manipulate the system as

γ 2d

[
An0

∂

∂x
+ P0K0

n0

(
u0

∂

∂t0
+ ∂

∂x

)]
[Eq. (75a)]

− γ d

(
∂

∂t0
+ u0

∂

∂x

)
[Eq. (75b)],

which gives

γ 2d

(
−γ 2P0

(
d + 1 − u2

0K0
)∂2u2

∂t2
0

− 2γ 2P0u0(d + 1 − K0)
∂2u2

∂t0∂x

+ {An2
0 + γ 2P0

[−u2
0(d + 1) + K0

]}∂2u2

∂x2

)
= LOT, (82)

where LOT represents lower-order terms (i.e., n1, u1, etc.).
It is instructive here to change variables to χ

(±)
0 = x +

v
(±)
0 t0. Then, the equation becomes

γ 4P0d
(
d + 1 − u2

0K0
)
(v(+)

0 − v
(−)
0 )2 ∂

∂χ
(−)
0

∂

∂χ
(+)
0

u2 = LOT.

(83)

This is where we encounter an apparent problem. Upon in-
serting our solutions for the lower-order terms, we find that
the right-hand side depends on products and derivatives of
f (χ (+)

0 ). This implies that the LOT are solely functions of
χ

(+)
0 .

235435-10



EFFECTS OF DISSIPATION ON SOLITONS … PHYSICAL REVIEW B 99, 235435 (2019)

However, we see that functions of the form f (χ (+) ) are also
solutions to the homogeneous equation in Eq. (82) due to the
presence of the ∂

χ
(−)
0

operator.

So, products and derivatives of f (χ (+)
0 ) appear as inho-

mogeneous forcing terms that give rise to secular terms. For
instance, terms proportional to f (4)(χ (+)

0 ) give rise to solutions
of the form χ

(−)
0 f (3)(χ (+)

0 ). This grows unbounded in χ
(−)
0 —

and hence, in time t . This will eventually cause |u2| > |u1|,
invalidating the perturbation expansion. Thus, unless the LOT
vanish identically, they will give rise to χ

(±)
0 -secular terms in

u2—i.e., solutions growing unbounded in t0 or x.
Hence, we require the right-hand side to vanish and are left

with the desired compatibility equation:

0 = ∂

∂χ
(+)
0

(KdVB[n1]). (84)

Here, (KdVB[n1]) represents the Korteweg–de Vries-Burgers
equation, discussed earlier, acting on n1:

A′ ∂n1

∂t1
+ F ′ ∂n1

∂χ
(+)
0

+ B′n1
∂n1

∂χ
(+)
0

+ C ′ ∂3n1

∂χ
(+)3

0

− G ′ ∂2n1

χ
(+)2

0

n1

= 0; (85)

see Appendix E for the functional form of the coefficients.
The solution to the KdV-Burgers equation was already

derived in Sec. IV F and is simply reiterated here for conve-
nience:

n1(χ (+)
0 , t1) = c1(t1)sgn(B′C ′)sech2

{√
c1|B′|
12|C ′|

×
[
χ

(+)
0 −

(
c1|B′|
3|A′| sgn(A′C ′) + F ′

A′

)
t1

]}
,

(86)

where

c1(t1) = c1(0)

1 + t1/td
(87)

with

td = 45A′|C ′|
4c1(0)|B′|G ′ , (88)

with c1(0) the initial amplitude of the soliton.

VI. ANALYSIS

Nondimensionalizing helped ensure that all quantities were
order O(1) and any information about their magnitude was
solely contained in ε prefactors. However, having ordinary,
dimensional expressions is more useful for comparing with
experiments or existing literature. Therefore, the KdV-Burgers
coefficients are written in terms of ordinary, dimensional vari-
ables in Appendixes E and F [32]. Note that the coefficients
are still dimensionless and order unity [33].

The observables that characterize the system, to this order,
are the amplitude, width, speed, and decay period of the
soliton. The amplitude is simply given by

‖n1‖ = l−d
ref ε (d+2)/4εc1(t )sgn(B′C ′) := nmax. (89)

We can use nmax to eliminate c1 in the following expressions
[34]. Furthermore, we will factor out the explicit factors of ε

and lref from the KdV-Burgers coefficients; we will denote the
original, order unity, coefficients with a caret. Then, we can
write the speed as

v := v0 − εvF

(
c1B̂′

3Â′ sgn(B′C ′) + F̂ ′

Â′

)

= v0 − nmaxB′

3A′ − vF
F ′

A′ . (90)

Similarly, the width is given by

W := ξ

√
12|Ĉ ′|
c1|B̂′| =

√
12C ′

nmaxB′ . (91)

Finally, the soliton decays with

nmax(t ) := l−d
ref ε (d+6)/4c1(t )sgn(B′C ′) = nmax(0)

1 + t/td
, (92)

and the decay period is

td := 1

ε

45Â′|Ĉ ′|ξ
4c1(0)Ĝ ′ ˆ|B|′vF

= 45A′C ′

4nmax(0)vFG ′B′ . (93)

Here, nmax(0) is the initial value of nmax. The factor of ε in the
first equality came from converting our t̂1/t̂d to tεξ/t̂dvF :=
t/td .

We see that, upon redimensionalizing, c1 and ε never
appear alone. Therefore, simply defining nmax as their com-
bination causes all ε and c1 to drop out, showing that this is
a one-parameter family of solutions. Note that these results
hold in general for all nondimensionalizations specified in
Appendix B. Similarly, notice that the factors of lref have all
canceled: the observables are all independent of lref, as they
must be since lref is arbitrary.

As mentioned in Sec. III, not all of the system’s parameters
are independent. It is helpful to reiterate here which can be set
freely. Taking into account the thermodynamic relations, one
experimentally useful set of independent parameters would be
T0, n0, nmax(0), u = u0 + εU1, d1, d2, and κ .

A. Relation to previous results

As mentioned in the Introduction, Svintsov et al. [15] per-
formed a similar perturbative analysis of solitons, though that
analysis was restricted to the inviscid, Fermi liquid regime. It
is straightforward to compare the inviscid results presented in
Sec. IV E to those of Svintsov et al. [15].

First, our results for v0 in the case of no background flow,
u0 = 0, are in agreement for the regime where μ/T � 1
and μ/T > 0, but they differ otherwise. However, this is to
be expected: in setting up the problem, Svintsov et al. [15]
neglect the contribution of holes. If the contribution of holes
is included in their thermodynamic quantities, then our results
are in agreement in both Fermi regimes, |μ/T | � 1.

Nevertheless, the leading-order Dirac-regime speed v0

used by Svintsov et al. [15] and derived in Svintsov et al.
[35] has a minor error. There, the terms ik2�2

j vF /ω〈p−1
j 〉,

with j = e or h for electrons/holes, appear in Eqs. (28)
and (29) of Ref. [35]. These terms arise from the
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∇(vF 〈p j〉)/2 terms in the momentum conservation equations,
Eqs. (8) and (9) of Ref. [35]. This corresponds to our pressure
terms ∇Pj (though we combine Pe and Ph as P = Pe + Ph).
The issue arises when Svintsov et al. [35] restrict to leading-
order terms when calculating v0. As we showed in Eq. (50),
∇P/P ∼ ε2 in the Dirac regime (i.e., K0 = 0), while the
inclusion of these ik2�2

j vF /ω〈p−1
j 〉 terms in Svintsov et al.

[35] implicitly assumes ∇P/P ∼ ε. On removing these terms
from the leading-order equations, the results of Svintsov et al.
[35] are consistent with ours.

Furthermore, the Fermi-Dirac distribution function chosen
by Svintsov et al. [15] differs from the one chosen by Lucas
and Fong [1] (and hence used in this paper): Svintsov et al.
[15] chose f (p) as

f (p) = 1

1 + exp{[ε(p) − u · p − μ]/kBT } , (94)

while Lucas and Fong [1] chose the manifestly covariant

f (p) = 1

1 + exp[(pνuν − μ)/kBT ]
, (95)

with pν = (|p|, p) and uν = (1, u)/
√

1 − |u|2/v2
F . This

choice of distribution function is preferable as it preserves
the form of the dispersion relation ε = vF |p| under Lorentz
boosts [with γ = 1/

√
1 − (u/vF )2].

After accounting for these differences, our results are
nearly in agreement. A few typographical errors [36] remain
in the KdV equation and corresponding soliton solution and
dispersion relation of Svintsov et al. [15]. After repairing these
errors, we have consistent solutions and dispersion relations.

It is worth noting that Svintsov et al. [15] also use an
isothermal assumption, though it is not directly stated; this
assumption is utilized when stating the formula [37]

dε

ε
= 2ξ

dn

n
+ (3 − 4ξ )

dT

T
, (96)

with ξ := n2/ε〈ε−1〉, and 〈ε−1〉 	= ε−1 is the average inverse
energy. While ε depends on both n and T , the corresponding
formula for dε/ε in Svintsov et al. [15] only has the dn/n
term. In the Fermi regime, |μ/T | � 1 and ξ = 3/4, so this is
a valid simplification. However, in the Dirac regime, ξ � 1,
and the dT/T term cannot be neglected unless the system is
isothermal, dT = 0.

B. Role of gating

Our setup involves the use of conducting gates to screen
the electrostatic interactions and make the problem local,
and hence more mathematically tractable. However, Akbari-
Moghanjoughi [14] instead considered solitons in ungated
graphene; that analysis was restricted to the inviscid, T = 0
Fermi regime with no background flow [38]. While Akbari-
Moghanjoughi [14] also derived solitonic solutions, a number
of the properties differed markedly from those derived here.

First, Akbari-Moghanjoughi [14] found that there exists
a critical propagation velocity vc that separates periodic,
wavelike solutions (v < vc) and solitonic solutions (v > vc).
This was found to be vc = 3/

√
38 for d = 2 and vc = 2/3

for d = 3. However, there appears to be a small error in the
derivation: Eq. (7) for φ involves a term n−2/3 that should be

n−3/2. Repeating the derivation with this change shows that
the critical propagation velocity is actually vc = 1/

√
d . Our

(u0 = 0, Fermi regime) solutions have velocity

v = 1√
d

√
1 + An2

0d

P0(d + 1)
+ εv1 � 1√

d
= vc, (97)

where we have used the fact that sgn v1 = sgn v0. Thus, we
see that our soliton’s speeds are bounded below by the critical
speed, while Akbari-Moghanjoughi [14] found that soliton
speeds should be bounded above by the critical speed.

Another difference involves the relation between the soli-
ton height and speed. Using our expression for v1, we found
that the total speed with u0 = 0 is

v = v0

(
1 + ε

c1|B|
3|v0A|

)
(98)

while the soliton height is εc1, with a free parameter c1 > 0
[39]. Thus, increasing the height corresponds to increasing
the speed, and vice versa. However, Akbari-Moghanjoughi
[14] found that increasing the height causes the speed to
decrease. Nevertheless, we both find the same, inverse relation
between the height and width (as required by total charge
conservation).

Furthermore, Akbari-Moghanjoughi [14] finds only dark
(n1/n0 < 0) solitons. However, our solutions only give
bright (n1/n0 > 0) solitons. Referring to Eq. (86), we have
sgn(n1) = sgn(B′C ′). Here, we will consider the Dirac (m >

0) and Fermi (m < 0) cases separately. For the Dirac regime,
with K0 = 0, it is readily apparent that B′C ′ (cf., Appendix E)
is positive, yielding bright solitons.

Showing that the same holds true in the Fermi regime, with
K0 = (d + 1)/d , is more involved. Using the expressions for
B′ and C ′ from Appendix E, we see

sgn

(
n1

n0

)
= sgn[3d (u0 + v0)2 − (1 + u0v0)2]. (99)

We see that this is clearly positive when u0 = 0; using the
expression for v0, we find it only crosses zero [40] when u0 is
given by

u0 = ±1 or

√
2λ(3d − 1) + 4 ± λ

√
3d

2 − λ

or −
√

2λ(3d − 1) + 4 ± λ
√

3d

2 − λ
, (100)

with λ := An2
0/P0(d + 1) as before. Finally, it can be checked

that each of these solutions is larger (in magnitude) than unity;
that is, B′C ′ does not cross zero in the range u0 ∈ (−1, 1).
Thus, for |u0| < 1, we find that n1/n0 > 0, and only bright
solitons are permitted. Note that the adiabatic B′ and C ′
coefficients in Appendix F are identical to their isothermal
Fermi counterparts: therefore, the same reasoning shows the
adiabatic system only has bright solutions, too.

Thus, it appears that a number of our findings are di-
rectly opposed to those of Akbari-Moghanjoughi [14]. While
one might be tempted to compare the results of Akbari-
Moghanjoughi [14] with our solutions by taking the gating
distance di → ∞, various quantities (e.g., v0, W , etc.) would
no longer be order-1, violating our expansion assumptions.
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Instead, it appears that the presence or absence of gates can
create qualitatively different results. However, this should
not be surprising: the electric field with gates is given by
derivatives of the density E ∝ ∂xn + (d1d2/3)∂3

x n + · · · . On
the other hand, the electric field without gates is given by the
antiderivative of n: E (x) ∝ ∫

dy n(x)/|x − y|2. More specifi-
cally, the x-k Fourier transform of the electric potential with
gates is φ̂ ∝ (1 − k2d1d2/3 + · · · )n̂; highly dispersive, large
k-modes increase the electric field’s magnitude. The potential
without gates is φ̂ ∝ −n̂/k2, so large k-modes decrease the
electric field’s magnitude. Given that this is the only differ-
ence between the setup of the two problems, it appears that
this is the origin of the differences in the results [41].

C. Energy and entropy

It is interesting to determine the rate of energy loss by the
soliton to dissipation. We can accomplish this by integrating
the KdV-Burgers equation (59). Using Eq. (81b) to replace n1

with u1, we get (with new coefficients denoted by primes)

A′∂t1 u1 + F ′∂xu1 + C ′∂3
x u1 + B′u1∂xu1 = G ′∂2

x u1. (101)

Multiplying this equation by u1 gives

1
2A

′∂t1 u2
1 + 1

2F
′∂xu2

1 + C ′∂x
(
u1∂

2
x u1
)

− 1
2C

′∂x(∂xu1)2 + 1
3B

′∂xu3
1

= G ′∂x(u1∂xu1) − G ′(∂xu1)2. (102)

If we integrate once over all of x-space and impose boundary
conditions u1 = ∂xu1 = 0 at x = ±∞, we find

1

2

(
∂t1 + F ′

A′ ∂x

)∫
dx u2

1 = − G ′

A′

∫
dx(∂xu1)2. (103)

The left-hand side represents the time rate-of-change of the
kinetic energy in a moving reference frame; this is more easily
seen if the background current U1 is removed so F ′ = 0.

Using the expressions for A′ and G ′ (cf., Appendix E), the
right-hand side is negative semidefinite for the case with no
background flow u0 = 0. Thus, we see that—as expected—the
viscosity causes the kinetic energy to decrease.

When u0 	= 0, it is more difficult to see that G ′/A′ � 0,
as it must be for viscosity to remove energy. Here, we will
again treat the Dirac and Fermi regimes separately. Starting
with the Dirac case and using the expressions for A′ and G ′
from Appendix E, we find

sgn

( G ′

A′

)
= sgn

{
σQγ 2

(
P0

n0

)2 (u0 + v0)4

1 + u0v0
(d + 1)2

+ (u0 + v0)2

[
ζ + 2η

(
1 − 1

d

)]}
. (104)

The only questionable term is σQ/(1 + u0v0). This term is
positive for

|u0| <
1√

1 + [
An2

0/P0(d + 1)
] . (105)

However, it blows up when |u0| → 1/
√

1 + λ, with λ :=
An2

0/P0(d + 1). This causes u1 and P1 to become unbounded

and invalidates our perturbation expansion. Thus, |u0| <

1/
√

1 + λ is a constraint on the allowed parameters that make
our derivation consistent. Under this constraint, A′G ′ � 0 in
the Dirac regime, as it must be.

In the Fermi regime, we instead have

sgn

( G ′

A′

)
= sgn

(
σQγ 2

(
P0

n0

)2

(d + 1)
(u0 + v0)2

(1 + u0v0)

+ d

d + 1

(u0 + v0)2
[
ζ + 2η

(
1 − 1

d

)]
(u0 + v0)

[
v0
(
d − u2

0

)+ u0(d − 1)
]
)

.

(106)

It is easy to show [42] that (u0 + v0)[v0(d − u2
0) + u0(d −

1)] > 0 for d > 1 and |u0| < 1; recall that we already required
|u0| < 1, otherwise γ = 1/

√
1 − u2

0 would blow up. There-
fore, the η and ζ terms are positive.

As in the Dirac regime, we also have a σQ/(1 + u0v0)
term. Though v0 is different in the Fermi regime, the same
reasoning also shows that this quantity is similarly positive
for |u0| < 1/

√
1 + λ. Thus, as long as |u0| < 1/

√
1 + λ, we

see that our theory is well-defined, A′G ′ � 0, and viscosity
causes energy to decrease, as required by the second law
of thermodynamics. Finally, note that the adiabatic G ′ in
Appendix F differs slightly from this isothermal Fermi G ′;
nevertheless, it shares the same questionable terms. Thus,
the same exact reasoning shows G ′/A′ � 0 for the adiabatic
regime [43].

To further investigate the soliton’s decay, it is helpful to
analyze entropy generation. Lucas and Fong [1] provide the
following formula [44] for the divergence of the entropy
current sμ,

∂μsμ = 1

T
∂μuν

[
ηPμρPνα

(
∂ρuα + ∂αuρ − 2

d
gρα∂βuβ

)

+ ζPμν∂αuα

]
+ σQ

T

(
T ∂μ

μ

T
+ Fμρuρ

)

×Pμν

(
T ∂ν

μ

T
+ Fνρuρ

)
. (107)

For simplicity, consider the case with no background flow,
u0 = U1 = 0. Upon implementing our usual nondimensional-
ization in the Dirac regime (cf., Sec. III), we see the highest-
order terms are

∂μsμ = η

T0
∂ iu j

1

[
∂i(u1) j + ∂ j (u1)i − 2

d
gi j∂kuk

1

]
+ ζ

T0

(
∂kuk

1

)2
.

(108)

Then, restricting to one-dimensional motion and using our
thermodynamic relations and first-order solutions, we find

∂μsμ = (∂xn1)2

[
ζ + 2η

(
1 − 1

d

)]
v2

0

T0n2
0

+ O(ε). (109)

We see that entropy is generated at locations where the
derivative of n1 is largest: for solitons, this occurs at the
leading and trailing faces (Fig. 3). Further, as the soliton
spreads out, the entropy production slows over time (Fig. 4).
Finally, for the Dirac regime, σQ-induced entropy production
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(a)

(b)

FIG. 3. The entropy production ∂μsμ (a) and soliton charge density n1 (b) at select times. Values used were A = 0.88, B = −0.70, C =
−0.060, F = −1.1, and G = 0.53 with the height normalized to 4.0 × 108 cm−2.

is suppressed to subleading order; η and ζ are the main
producers of entropy.

VII. EXPERIMENTAL PROPOSAL

Here, we will briefly detail the applicability of this theory
to experiment.

A. Values of parameters

It has been more convenient to deal with nondimensional
variables throughout the derivation. However, we now con-
vert back to dimensionful quantities to better understand
their physical magnitude. It is worth emphasizing that this
conversion is dependent on the nondimensionalization we

chose. The values calculated in this section are specific to
the Dirac regime nondimensionalization laid out in Sec. III;
a similar analysis could be performed for the Fermi regime
nondimensionalization specified in Appendix B 1.

The dimensional and nondimensional values of the various
parameters in the problem are listed in Table I. For the remain-
der of this section, we will specialize to dimension d = 2.
Note that we are using the values vF = c/300 [1] and lref =
50 nm. For computing the sample values, we have chosen
ε = 0.1. We see that all of the nondimensional parameters are
approximately equal to unity, as required. However, there are
a few points to note.

In previous experiments, the distance between the
graphene and the gates di (i = 1, 2) was usually on the or-
der of 300 nm [45]. We require a larger gate distance of

FIG. 4. The instantaneous entropy production ∂μsμ as a function of time. Values used were A = 0.88, B = −0.70, C = −0.060, F = −1.1,
and G = 0.53 with the height normalized to 4.0 × 108 cm−2.
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TABLE I. Values of the various parameters in terms of the small parameter ε. Sample values are given for ε = 0.1 and dimension d = 2.

ε-dependence Sample Nondim. value Sample Dim. value

n0 εn̂0 4 × 1010 cm−2 1.0 4.0 × 109 cm−2

di ε−5/4d̂i 50 nm 1.0 890 nm

A ε−5/4Â 5.3 × 10−36 J m2 0.22 2.1 × 10−35 J m2

T0 ε1/4T̂0 150 K 0.70 60 K

P0 ε3/4T̂ 3
0 8.4 × 10−7 N m−1 1.1 T̂ 3

0 5.9 × 10−8 N m−1

μ0 ε3/4 n̂0
T̂0

2.1 × 10−21 J 1.1 n̂0
T̂0

6.1 × 10−22 J

σQ ε1/2σ̂Q 0.24 k�−1 0.63 0.048 k�−1

η η̂ 4.2 × 10−20 kg s−1 1.1 4.8 × 10−20 kg s−1

di = 890 nm corresponding to d̂i = 1.0. The static dielectric
constant κ must be chosen relative to d1 and d2. For the
remaining normalizations to be consistent, we require κ ≈ 1.
That is, the graphene should be suspended from its contacts
with vacuum filling the gap between the graphene sheet and
the conducting gates.

It is important to reiterate the way we nondimensionalized
the intrinsic conductivity. At a temperature of 60 K, σQ/e2

has a fixed value of 0.20h̄−1. We needed to relate the relative
sizes of nondimensional parameters ε and σQh̄/e2 to solve
the problem. Our derivation assumed ε ∼ 0.1, so that ε1/2 ∼
σQh̄/e2. This fixes the value of σ̂Q as σ̂Q = 0.20ε−1/2.

Notice that if ε is increased, then the numerical value of σ̂Q

decreases; hence, the intrinsic conductivity becomes a higher-
order correction and drops out of our first-order solutions.
Conversely, if ε is decreased, σ̂Q could grow large and require
a different nondimensionalization for σQ. For ε small enough,
it would be more appropriate to take σQ = ε0σ̂Qe2/h̄. This
alternative would require different nondimensionalizations for
all variables (cf., Appendix B); nevertheless, similar solutions
would result (though the viscosity would no longer appear
in the first-order corrections). Similar considerations also
apply for η, though it is considerably simpler given that
ηld

ref/h̄ ≈ 1.
It is also useful to determine the values of the parame-

ters appearing as coefficients in the KdV and KdV-Burgers
equations (i.e., A, B, C, and G). For instance, consider the
case with v0 = 0, u0 > 0, and U1 = 0; we will also set ζ = 0
and choose c1 = 1.0. Using the above values and the bare
thermodynamic coefficients C0 and C1 (cf., Appendix A), we
find A = 0.88, B = −0.70, C = −0.060, F = −1.1, and G =
0.53 (cf., Fig. 1). Importantly, we see that B, C, and G are all
roughly the same order, implying that nonlinearity, dispersion,
and dissipation are equally important.

B. Source and signal

As we discussed in Sec. III, the characteristic length of
the disturbance ξ is related to lref as ξ = lref/ε

(d+5)/4. For
d = 2 and ε = 0.1 with graphene’s lref = 50 nm, we find
a pulse width of approximately 2.8 μm. For the u0 = 0
case, the propagation speed is approximately v = 0.43vF ∼
0.43c/300, giving a bandwidth of roughly v/ξ = 150 GHz.

If we consider the stationary soliton case v0 = 0, we
need to source a background current u0 	= 0 to counteract its
propagation. In Sec. IV, we found that u0 = 0.40 vF = 4.0 ×
105 ms−1; with a charge density of n0 = 4.0 × 109 cm−2, we
need a current density of K0 = |en0u0| = 2.5 Am−1.

As shown previously, the system has a (dimensional) char-
acteristic decay time of

td = 45lrefA|C|
4ε11/4vFG|B| . (110)

Inserting the previously chosen values for these coefficients,
we find td ≈ 44 ps.

To estimate the magnitude of the signal, we first calcu-
late the background chemical potential μ0 = ε3/4h̄vF l−1

ref μ̂0 =
6.1 × 10−22 J. From this, we find the background voltage V0 =
μ0/e = 3.8 mV. Then, the signal voltage V1 = μ1/e would be
a factor of ε ∼ 0.1 smaller, or 380 μV.

C. Joule heating

For the nonpropagating case (v0 = 0), a large uniform
background current u0 flows through the graphene; this will
cause Joule heating of the entire sample due to graphene’s
resistance. It is worthwhile to verify that this heating occurs
sufficiently slowly so as not to interfere with the soliton’s
propagation and decay.

The power produced, per unit area, by Joule heating is

PJ = K2
0 ρ, (111)

with resistivity ρ and surface current density K0. As a worst-
case scenario, assuming the graphene does not lose any heat
to the environment, this power goes solely toward heating the
graphene.

The specific heat of graphene [46] at 60 K is approximately
60 mJ g−1 K−1. Given an atomic mass of 12.01 g mol−1 for
carbon and an atomic density of 6.3 mol cm−2 for carbon
atoms in graphene [47], we find a specific heat of cs = 4.5 ×
10−9 J cm−2K−1.

Therefore, the soliton’s temperature will change at a rate
of PJ/cs = 3.0 K ns−1. Given that the suggested experiment
would be measuring the soliton’s temperature anomaly T1 =
εT0, it would only be sensitive to Joule heating after a temper-
ature change of similar magnitude had been generated. Hence,
it would take approximately T1cs/PJ = 2.0 ns for the system
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FIG. 5. Side view of the proposed experimental setup; the
graphene is sandwiched between two layers of dielectric, and further
sandwiched between two conducting gates. A source and sink on
either edge of the graphene generate the background current u0. The
pulse generator produces the soliton, and the detector detects it.

to heat appreciably. Given that this time is long compared to
the characteristic timescales of the problem (tchar and td ), we
are justified in neglected Joule heating.

Notice that the characteristic Joule-heating time is also
long compared to the electron-phonon scattering time; this
implies the electrons and graphene lattice would thermalize
relatively quickly compared to the Joule heating time. This is
why we utilized the specific heat of the entire graphene system
(electrons and lattice) as opposed to the specific heat of only
the electrons.

D. Experimental setup

The solitonic solutions we have derived offer a means
to experimentally measure the viscosity η of graphene. In
particular, the viscous coefficients σQ, η, and ζ all enter into
the coefficient we have denoted G. Therefore, if the value of
G can be measured, then the viscosity can be determined.

Referring to the expression for G, we see that η only
appears in the combination ζ + 2η(1 − 1/d ); hence, it is this
quantity that can be determined from experiment. In practice,
we expect ζ � η, and thus this procedure offers an estimate
for η [1]. Furthermore, determining η from G requires know-
ing the values of all the other parameters P0, n0, etc. Most
of these are experimentally determined and hence known; the
only other necessary quantity is the intrinsic conductivity σQ.
Previous measurements of this quantity exist [4,5]; therefore,
it can be treated as a known quantity.

An initial disturbance needs to be generated in the
graphene; for instance, this can be accomplished via a short
voltage spike produced by a thin contact placed laterally atop
the sample (cf., Fig. 5). It is well known that the KdV equation
causes a localized profile to split into a series of left- and right-
moving solitons [48] sorted by height. After the disturbance
is allowed to propagate a sufficient distance, the individual
solitons should have separated enough to be separately distin-
guished. The actual population of solitons generated by the
pulse will be dependent on the contact’s shape and voltage
profile: the distribution of soliton heights and widths can be
determined by the inverse scattering transform [49].

Given that the solitons represent a localized change in the
charge density, it should be possible to detect them with a
voltmeter; a voltage time-series could then reconstruct the

soliton profile. The dissipative terms cause two measurable
effects: a change in the propagation speed and a decay of the
soliton’s height. This requires measuring either the soliton’s
speed or amplitude as a function of time. Depending on
the particular experimental setup, one effect might be more
accessible than the other. Next, we describe two possible
experimental setups.

1. No propagation

Without a background current u0 = 0, the soliton prop-
agates at a speed v ≈ vF ≈ c/300. Such a fast propagation
speed could make measurement difficult. One way to mitigate
this is to impose a countercurrent u0 in the opposite direction
of propagation; as detailed in Sec. IV, it is possible to choose
a background current u0 + εU1 such that the soliton is station-
ary in the laboratory frame v0 + εv1 = 0. Doing this should
make obtaining the height measurements much easier. In fact,
the speed measurements are still feasible in this setup since
the dissipation causes v1, and hence the control current U1, to
decay over time.

One possible barrier to implementation of this method is
the boundary condition of graphene. So far, we have neglected
boundary effects by assuming one-dimensional propagation;
depending on graphene’s boundary conditions, this might not
be justified. Graphene most likely satisfies one of two possible
boundary conditions [50]: either a no-slip boundary (u = 0) or
no-stress (no normal velocity gradient, i.e., [n̂ · ∇]u = 0 with
n̂ the boundary unit normal). If the actual boundary is no-slip,
our one-dimensional propagation assumption is violated; in
this case, the sample must be sufficiently wide to ignore edge
effects, or a different experimental setup (cf., the next sec-
tion) is needed. Conversely, a no-stress boundary permits our
one-dimensional soliton solution. There is some experimental
evidence that no-stress boundaries are the correct boundary
type [1], and theory predicts that weakly disordered edges at
low temperature (T � 40 K) have a slip-length on the order
of 50 μm. Therefore, it is plausible that, for graphene samples
of width at most ∼100 μm, a no-stress boundary condition is
appropriate, allowing for large u0 countercurrent.

2. No background current

If graphene instead possesses a no-slip boundary condition,
a different experimental method will be needed. For this
setup, we will not use a background flow, u0 = 0. Then,
the boundary conditions are mostly irrelevant, since the fluid
velocity is now of order O(u1) = εvF and can therefore be
made small. For this setup, height measurements are more
suitable; after one decay period τ0, the height decreases by a
factor of 1

2 while the propagation velocity changes by a factor
of δv/v0 = 1

2ε � 1.
Following the method proposed by Coelho et al. [51],

we recommend periodically producing a voltage pulse and
measuring a set distance away. By averaging over many
realizations, it should be possible to obtain a wave profile.
This could be repeated at a few locations, thereby measuring
the decay rate as a function of downstream position.

This method is likely more difficult experimentally given
that it requires taking measurements at multiple locations
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sequentially. However, it has the benefit of being theoretically
sound regardless of graphene’s boundary conditions.

VIII. CONCLUSION

Graphene offers a fantastic environment for studying
strong-coupling phenomena. Hydrodynamic analysis presents
a useful set of tools for analyzing the long-wavelength physics
in such a clean, strongly coupled system. The Fermi liquid
regime has much in common with ordinary metals and has
been the focus of many experiments in graphene; meanwhile,
the Dirac fluid regime hosts a number of intriguing phenom-
ena. When graphene is placed in a hydrodynamic regime, the
electrons obey relativistic Navier-Stokes equations and can
form solitonic solutions. An ordinary perturbation expansion
was used to derive the special case of a stationary soliton on
a background counterflow. Additionally, a full multiple scales
asymptotic analysis was utilized to treat the general case with
arbitrary background flow. These methods furnished analytic
approximations to the shape and speed of the predicted soli-
tons. This analysis did not deal with the boundary conditions
of the fluid flow; this offers an interesting avenue for future
research.

By including dissipation in our system, we were able to
model the decay of the solitons. The analysis showed that
dissipation causes both a decay of the soliton’s height as well
as its speed. This decay rate offers a means to experimentally
measure dissipation in the hydrodynamic regime of graphene.
The results of this paper help elucidate the connection be-
tween solitons in the Fermi and Dirac regimes of graphene and
put forward a new method for measuring hydrodynamically
relevant parameters such as the intrinsic conductivity and
shear viscosity.
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APPENDIX A: THERMODYNAMIC COEFFICIENTS

Following Lucas and Fong [1], we can derive the pressure
for weak coupling, starting from the grand-canonical ensem-
ble for a free Fermi gas in d dimensions,

P(μ, T ) = −�G

V

= kBT

V

∑
A,p

ln(ZA,p)

= kBT
∑

A

∫
dd p

(2π h̄)d
ln(1 + e[qAμ−εA(p)]/kBT )

= −4(kBT )d+1�d−1(d − 1)!

(2π h̄vF )d
[Lid+1(−eμ/kBT )

+ Lid+1(−e−μ/kBT )]. (A1)

Here, we have �G the grand potential, Z = exp(−�G/kBT )
the grand partition function, and V the volume. We made
use of the fact that, for a free Fermi gas, the grand partition
function is separable over modes (A and p): Z = ∏

A,p ZA,p.
Additionally, we have the excitation energy εA(p) = vF |p|,
�d−1 = 2πd/2/�(d/2) the surface area of a unit (d − 1)-
sphere, � is the gamma function, and Lid the polylogarithm
of order d + 1. Note that the sum over species runs over
spin/valley degeneracy (giving a factor of 4) as well as
electrons/holes with qA = ±1. More specifically,∑

A ln(ZA) = 4 ln(Z1(μ, T )) + 4 ln(Z1(−μ, T )).
Likewise, the carrier density is given by

n(μ, T ) = ∂P

∂μ

= 4(kBT )d�d−1(d − 1)!

(2π h̄vF )d

× [−Lid (−eμ/kBT ) + Lid (−e−μ/kBT )]. (A2)

We can develop series (asymptotic) expansions in Dirac
(Fermi) regimes.

In the Dirac regime (μ � kBT ), the polylogarithm can be
approximated as [53]

Lis(−ez ) = −
∞∑

k=0

η(s − k)
zk

k!
(A3)

for |z| < π , with η the Dirichlet eta function. Thus, the
pressure is given by

P(μ, T ) = 8
(kBT )d+1�d−1(d − 1)!

(2π h̄vF )d

×
∞∑

k=0

η(d + 1 − 2k)

(2k)!

(
μ

kBT

)2k

= 8
(kBT )d+1�d−1(d − 1)!

(2π h̄vF )d

[
η(d + 1)

+η(d − 1)

2

(
μ

kBT

)2

+ O

(
μ

kBT

)4
]
, (A4)

and the carrier density is

n(μ, T ) = 8μ(kBT )d−1�d−1(d − 1)!

(2π h̄vF )d

×
∞∑

k=0

η(d − 1 − 2k)

(2k + 1)!

(
μ

kBT

)2k

= 8μ(kBT )d−1�d−1(d − 1)!

(2π h̄vF )d

[
η(d − 1)

+ η(d − 3)

6

(
μ

kBT

)2

+ O

(
μ

kBT

)4
]
. (A5)

For instance, for d = 2, we find

P = (kBT )3

(h̄vF )2

[
4η(3)

π
+ 2 ln(2)

π

(
μ

kBT

)2

+ O

(
μ

kBT

)4
]

(A6)
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and

n = μ(kBT )

(h̄vF )2

[
4 ln(2)

π
+ 1

6π

(
μ

kBT

)2

+ O

(
μ

kBT

)6
]
. (A7)

Instead, in the Fermi regime (μ � kBT ), an asymptotic
expansion of the polylogarithm is given by [53]

Lis(−ez ) = −2
�s/2�∑
k=0

η(2k)

(s − 2k)!
(z)s−2k + O(e−z ) (A8)

for Rez � 1, while Lis[−exp(−z)] is subdominant and there-
fore can be neglected. Thus, we find

P(μ, T ) = 8|μ|d+1�d−1

(2π h̄vF )d

�(d+1)/2�∑
k=0

η(2k)(d − 1)!

(d + 1 − 2k)!

(
kBT

μ

)2k

= 8|μ|d+1�d−1

(2π h̄vF )d

[
1

2(d + 1)d
+ π2

12

(
kBT

μ

)2

+ O

(
kBT

μ

)4
]
, (A9)

and the carrier density is

n(μ, T ) = 8|μ|d sgn(μ)�d−1

(2π h̄vF )d

�d/2�∑
k=0

η(2k)(d − 1)!

(d − 2k)!

(
kBT

μ

)2k

= 8|μ|d sgn(μ)�d−1

(2π h̄vF )d

[
1

2d
+ π2(d − 1)

12

(
kBT

μ

)2

+ O

(
kBT

μ

)4
]
. (A10)

Again, for d = 2, we have

P = |μ|3
(h̄vF )2

[
1

3π
+ π

3

(
kBT

μ

)2

+ O

(
kBT

μ

)4
]

(A11)

and

n = μ2sgn(μ)

(h̄vF )2

[
1

π
+ π

3

(
kBT

μ

)2

+ O

(
kBT

μ

)4
]
. (A12)

Thus, we find the following coefficients:

CF
0 = 8|μ|d+1�d−1

(2π h̄vF )d

1

2(d + 1)d
, (A13)

CF
1 = 8|μ|d+1�d−1

(2π h̄vF )d

π2

12
, (A14)

and

CD
0 = 8

(kBT )d+1�d−1(d − 1)!

(2π h̄vF )d
η(d + 1), (A15)

CD
1 = 8

(kBT )d+1�d−1(d − 1)!

(2π h̄vF )d

η(d − 1)

2
. (A16)

When screening is not negligible, these coefficients get
renormalized. For instance, the Dirac coefficients for d = 2
and T → 0 become [54]

CD
0 = 8

(kBT )3�1

(2π h̄vF )2
η(3)

(
α(T )

α0

)2

, (A17)

CD
1 = 8

(kBT )3�1

(2π h̄vF )2

η(1)

2

(
α(T )

α0

)2

, (A18)

with α(T ) given in Eq. (26).

APPENDIX B: GENERAL NONDIMENSIONALIZATION

A critical aspect of these derivations was the correct choice
of nondimensionalization scheme. Depending on the physical
regime of interest (Fermi versus Dirac) as well as the relative
size of terms (e.g., how large ε is compared to σQh̄/e2),
different nondimensionalization choices may be appropriate.
To elucidate the relationship between these various schemes,
a single, general nondimensionalization can be performed. In
this Appendix, we will use a unit system in which h̄ = vF =
kB = lref = e = 1. Note: we are only nondimensionalizing
(h̄ = 1, etc.), but not normalizing; i.e., we are not requiring
that all quantities are unity (unlike the quantities denoted
earlier by carets).

For convenience, the main results are collected here:

O(μ) = ε
1
2 q− 1

2 p+ 1
2 m+ 1

2 |m|
√

O(η)

O(σQ)
,

O(T ) = ε
1
2 q− 1

2 p+ 1
2 |m|
√

O(η)

O(σQ)
,

O(P) = ε
d+1

2 q− d+1
2 p+ d+1

4 m+ d+1
4 |m|

√
O(η)

O(σQ)

d+1

,

O(n) = ε
d
2 q− d

2 p+ d+1
4 m+ d+1

4 |m|
√

O(η)

O(σQ)

d

,

O(∂x ) = ε1+ d+1
2 q− d−1

2 p+ d+1
4 m+ d+1

4 |m|
√

O(η)d−1

O(σQ)d+1
,

O(di ) = ε− 1
2 − d+1

2 q+ d−1
2 p− d+1

4 m− d+1
4 |m|

√
O(σQ)d+1

O(η)d−1
,

O(u) = 1,

O(A) = ε
−d+1

2 q+ d−1
2 p− d+1

4 m− d+1
4 |m|

√
O(σQ)

O(η)

d−1

. (B1)

Here, we have defined four parameters [55]: d the spatial
dimension, m ∈ Z \ {0}, p ∈ N � 0, and q ∈ N � 0. The pa-
rameter m is defined as

εm := O

(
μ

kBT

)2

, (B2)

and it represents the “Dirac” or “Fermi” quality of the system:
m > 0 corresponds to increasingly strong “Dirac” character
while m < 0 is more “Fermi”-like. The parameter p measures
the importance of the shear terms η: if p = 0, the shear terms
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enter our first-order correction equations while, for p > 0,
it enters at the (p + 1)-order correction equations and thus
is not considered in our analysis. Likewise, the parameter q
measures the importance of the conductive terms σQ: if q = 0,
the conductive terms enter our first-order correction equations,
but they are higher order for q > 0.

The KdV-Burgers coefficients specified in Appendixes E
and F and throughout the paper assume p = q = 0. When
using other choices of p and q, it is important to replace η →
ηδp,0, ζ → ζ δp,0O(ζ )/O(η), and σQ → σδq,0. This ensures
that only the relevant dissipative coefficients appear.

Note that we have specified O(u) = 1 to allow for large
background flows O(u0) = 1. Nevertheless, these results still
apply if u0 = 0 (no background flow), in which case u ∼ εu1

and O(u) = ε. Additionally, these nondimensionalizations as-
sume that u < 1 is small enough that γ = 1/

√
1 − u2 is order

O(γ ) = 1. Finally, note that we have assumed O(η) � O(ζ ).

1. Parameter choice

For concreteness, the main paper utilizes a Dirac
regime nondimensionalization of m = 1 and p = q = 0 with
O(η) = 1 and O(σQ) = ε1/2.

We also highlight additional terms in the multiple scales
expansion arising from the Fermi regime. These come about
from a nondimensionalization with m = −1 and p = q = 0
with O(η) = O(σQ) = 1.

The alternate derivation for small ε mentioned in Sec. VII
would correspond to m = p = 1 and q = 0 with O(η) =
O(σQ) = 1.

It is worth highlighting that different choices of O(σQ) and
O(η) do not affect the calculated results or observables (cf.,
Appendix B 3). Likewise, the parameters m, p, and q have
minimal, straightforward effects on the results: p determines
whether η and ζ terms appear in G ′; q determines if σQ appears
in G ′; and m determines the form of P1, and thus F ′ [56].
Otherwise, the results are independent of the choice of m, p,
and q. To wit, these choices do not even affect the ε-order of
observable quantities; see Section VI.

Using the definition of A, it is easy to check that κ � 1
satisfies O(κ ) = ε−1/2−qO(σQ)O(α) � 1; this provides a con-
straint on the allowed parameters. For ε = 0.1, q = 0,
O(σQ) = ε1/2, and O(α) = 1 used throughout the main text,
we find O(κ ) = 1, consistent with our choice of κ = 1.

2. Entropy divergence

In Sec. VI C, we found that the entropy divergence only
depended on the η and ζ terms, to this order. Using our
expressions for the generalized nondimensionalization, we
can investigate what occurs for different parameter regimes.

Recall that Eq. (107) showed that

O(∂νsν ) = 1

O(T )
O(∂xu)2[O(η) + O(ζ )]

+ O(σQ)

O(T )
[O(∂xμ) + O(F xρuρ )]2. (B3)

Restricting our attention, as usual, to u < 1 such that γ =
1/

√
1 − u2 ≈ 1, we see that O(Fiρuρ ) = O(Ex ) = O(∂xφ) =

O(∂xAn). Thus, using the results from Appendix B, we have

O(∂νsν ) = O(η)O(∂x )2ε2−p

O(T )

[
ε p + O(ζ )

O(η)
ε p

+εq + εq+ 1
2 m+ 1

2 |m| + εq+m+|m|
]

. (B4)

Here, the terms in the square brackets represent the η, ζ ,
σQE2

x , σQEx∂xμ, and σQ(∂xμ)2 terms, respectively. Hence,
we recognize that increasing p causes the η and ζ terms to
be less relevant, while increasing q does the same to the σQ

terms. Furthermore, the leading factor of μ/T for the σQ

terms in Eq. (107) causes these terms to be higher order when
m > 0 (i.e., when μ/T is small), as expected. Finally, note that
Eqs. (B1) were defined under the assumption O(η) � O(ζ ), so
O(ζ )/O(η) in Eq. (B4) can be, at most, unity.

3. Order of dissipative coefficients

Notice that we have left O(σQ) and O(η) undetermined.
There is some subtlety in choosing these parameters. This
most obvious manner to proceed involves using existing the-
oretical predictions [1] for their magnitude [57]; for instance,
in d = 2,

η ≈
{

0.45T 2

α2 Dirac,
3μ2|n|

64πα2 ln(α−1 )T 2 Fermi,
(B5)

and

σQ =
{ 0.12

α2 Dirac,

1 Fermi,
(B6)

with α ≈ 4/ ln(104 K/T ). Ignoring logarithmic corrections,
these will then generate compatibility conditions on the pa-
rameters m, p, and q. Nevertheless, such a choice is only valid
in the infinitesimal ε limit: we must assume ε is small enough
that all the numerical prefactors—like 3/64π ≈ 0.015 for η

in the Dirac regime—are considered order-1 [i.e., O(ε0)]. If
ε is large enough that, for instance, 3/64π ≈ ε, then this
assumption breaks down.

Alternatively, one could instead calculate the numerical
values for σQ and η from the existing theories. For instance, in
Sec. III, we calculated σQ = 0.20 for our choices of parame-
ters. This value can then be compared to the expected value of
ε to determine the correct scaling. Continuing our example,
assuming ε ≈ 0.1, we found σQ ≈ ε1/2. While this method
is somewhat more ad hoc than the previously described one,
it has the benefit that it is now valid in a neighborhood of
the desired ε rather than for solely infinitesimal ε. This is the
method used in the main text since we are considering ε small
but finite.

4. Derivation: Dominant balance

Now, we will derive the results given at the beginning of
Appendix B. These results follow from the application of
dominant balance.

First, we define a small nondimensional parameter ε � 1
as our expansion parameter: that is, all terms will be expanded
in integer powers of ε as y = y0 + εy1 + · · · . Further, we will
assume that all leading-order quantities are uniform in space
and constant in time [i.e., y(x, t ) = y0 + εy1(x, t ) + · · · ]. This
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implies that derivatives will always generate one extra factor
of ε: O(∂μy(x, t )) = O(∂μεy1(x, t )) = εO(∂μ)O(y).

Next, we introduce the parameter m ∈ Z \ {0} as

εm := O
(μ

T

)2
. (B7)

We require that m be an integer since it enters in an asymptotic
expansion of the equation of state P(μ, T ); since our main
equations are expanded in integer powers of ε, we must also
have this asymptotic expansion in integer powers of ε. Also,
notice we used the square of μ/T ; it is easily seen that the
asymptotic expansion of P(μ, T ) only involves even powers
of μ/T since it is an even function of μ/T [58]. Thus, we see
that the Dirac regime follows when m > 0 and the Fermi case
corresponds to m < 0; the m = 0 case is excluded because
then the thermodynamic equation of state [cf., Eq. (A1)]
cannot be expanded in a series/asymptotic expansion.

With this definition, we are able to collapse the two dif-
ferent nondimensionalizations of the pressure. From the ther-
modynamic equation of state Eq. (A1), we see that O(P) =
O(T )d+1 for Dirac and O(P) = O(μ)d+1 for Fermi. There-
fore, we have O(P) = ε (d+1)m/4+(−d−1)|m|/4O(T )d+1 in gen-
eral. Likewise, the charge density can be nondimensionalized
as O(n) = ε|m|/2O(P)/O(T ) = ε (d+1)m/4+(−d+1)|m|/4O(T )d .

Now, we begin using dominant balance to impose restric-
tions based on our desire that certain terms appear at certain
orders. Here, we must use some foresight about which terms
the equations will contain. To ensure that we have wave-
like solutions, we want the terms appearing in the leading-
order equations to match those in Sec. V. Since we want
the dispersive electromagnetic terms d1d2∂

3
x n to appear at

first-order corrections, this means the nondispersive electro-
magnetic term ∂xn must appear at leading order. Thus, the
two electromagnetic terms must differ by one factor of ε:
this imposes O(di ) = ε1/2/O(∂x ); this is our first assumption.
Requiring the nondispersive electromagnetic term to enter
at leading order enforces O(∂xP) = O(An∂xn) yielding our
second assumption: O(A) = ε (−d−1)m/4+(d−3)|m|/4O(T )−d+1.

Next, we wish the leading-order equations to be satisfied
even if u0 = 0. Setting u0 = 0 and performing a dominant bal-
ance on the leading charge conservation equation (74a) gives
O(∂t ) = O(u)O(∂x ), our third requirement. Another dominant
balance on the leading momentum conservation equation
(74b) yields O(u) = 1, our fourth and final requirement.

Moving onto the shear- and bulk-viscosity terms, we in-
troduce a second parameter p ∈ N � 0. This parameter is
defined such that p = 0 ensures that the shear/bulk viscosities
appear in our first-order correction equations, p = 1 would
push these terms to second-order corrections, and so on.
Since we are only concerned with first-order corrections, this
means shear/bulk viscosity is relevant for p = 0 and irrele-
vant for p > 0. This is implemented by imposing O(ε∂xP) =
ε−pO(η∂2

x n), yielding O(∂x ) = ε p+1O(P)/O(η).
Finally, we introduce one more parameter q ∈ N � 0

controlling the order at which the intrinsic conductivity σQ

appears. Similar to the parameter p, the parameter q = 0
yields σQ terms at first-order while q > 0 corresponds
to higher-order terms (which will be neglected in this
analysis). It is easy to check that of the two σQ terms, the
electromagnetic term O(F νρuρ ) = O(A∂xn) is always larger

than the thermoelectric term O(T ∂x(μ/T )) � O(A∂xn). Thus,
we introduce the parameter q as O(ε∂t n) = ε−qO(σQ∂2

x An).
This implies that O(T ) = εq/2−p/2+|m|/2

√
O(η)/O(σQ). Using

these various relations reproduces the results given at the
beginning of Appendix B.

APPENDIX C: ADIABATIC SYSTEM

Here, we can utilize the same nondimensionalization
laid out in Appendix B for the isothermal system. This
follows because the derivation in Appendix B 4 required
that the leading-order equations still be satisfied when
u0 = 0. However, it is easy to show that, when u0 = 0,
the leading-order energy conservation equation (C15b) is
equivalent to the leading-order charge conservation equation
(C15a) combined with the isothermal relation between P
and n. Thus, the leading order u0 = 0 adiabatic system is
equivalent to the leading order u0 = 0 isothermal system, and
the previous nondimensionalization carries over.

Here, we will redo the multiple scales derivation using
the adiabatic assumption. Therefore, we will now include
the energy conservation equation (10) and allow T to vary
dynamically. As we did in Sec. V, we expand all of the
dynamic variables (including T ) in a perturbation expansion.

1. Perturbative thermodynamics

We will be using the thermodynamic relationships of
Sec. II C to write μ and T in terms of n and P. Expanding the
thermodynamic variables and collecting powers of ε yields the
following relations for the Dirac regime:

P0 = T d+1
0 C0, (Dirac: C1)

n0 = 2T d−1
0 μ0C1, (Dirac: C2)

P1 = P0

[
T1

T0
(d + 1) + C1

C0

(
μ0

T0

)2

δm,1

]
, (Dirac: C3)

n1 = n0

[
μ1

μ0
+ T1

T0
(d − 1) + 2

C2

C1

(
μ0

T0

)2

δm,1

]
,

(Dirac: C4)

P2 = P0

[
T2

T0
(d + 1) + T 2

1

T 2
0

(d + 1)d

2

+ C1

C0

(
2
μ1

μ0
+ (d − 1)

T1

T0

)(
μ0

T0

)2

δm,1

+ C2

C0

(
μ0

T0

)4

δm,1 + C1

C0

(
μ0

T0

)2

δm,2

]
, (Dirac: C5)

n2 = n0

[
μ2

μ0
+ T2

T0
(d − 1) + T 2

1

T 2
0

(d − 1)(d − 2)

2

+ μ1

μ0

T1

T0
(d−1)+2

C2

C1

(
3
μ1

μ0
+ (d − 3)

T1

T0

)(
μ0

T0

)2

δm,1

+ 3
C3

C1

(
μ0

T0

)4

δm,1 + 2
C2

C1

(
μ0

T0

)2

δm,2

]
. (Dirac: C6)
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Similarly, for the Fermi regime, we find

P0 = |μ0|d+1C0, (Fermi: C7)

n0 = |μ0|d sgn(μ0)C0(d + 1), (Fermi: C8)

P1 = P0

[
μ1

μ0
(d + 1) + C1

C0

(
T0

μ0

)2

δm,−1

]
, (Fermi: C9)

n1 = n0

[
μ1

μ0
d + C1

C0

d − 1

d + 1

(
T0

μ0

)2

δm,−1

]
, (Fermi: C10)

P2 = P0

[
μ2

μ0
(d + 1) + μ2

1

μ2
0

(d + 1)d

2
+ C1

C0

(
2

T1

T0
+ (d − 1)

μ1

μ0

)(
T0

μ0

)2

δm,−1 + C2

C0

(
T0

μ0

)4

δm,−1 + C1

C0

(
T0

μ0

)2

δm,−2

]
,

(Fermi: C11)

n2 = n0

[
μ2

μ0
d + μ2

1

μ2
0

d (d − 1)

2
+ C1

C0

d − 1

d + 1

(
2

T1

T0
+ (d − 2)

μ1

μ0

)(
T0

μ0

)2

δm,−1

+ C2

C0

d − 3

d + 1

(
T0

μ0

)4

δm,−1 + C1

C0

d − 1

d + 1

(
T0

μ0

)2

δm,−2

]
. (Fermi: C12)

In the Dirac regime, we can invert these relations to write μ and T in terms of P and n, treating these as the independent
variables at each order. However, in the Fermi regime, this perturbation expansion introduces a peculiarity. The P0 and n0

equations do not contain T0; therefore, rather than giving the value of T0, these equations provide a constraint on P0 and n0:

P0 = |n0|(d+1)/d

|C0|1/d (d + 1)(d+1)/d
sgnC0. (Fermi: C13)

Similarly, the P1(x, t ) and n1(x, t ) equations only depend on a single dynamical variable μ1(x, t ) [but not T1(x, t )]; therefore,
these also give a restriction on P1 and n1 to ensure that T0(x, t ) = T0 is independent of x and t :

P1

P0
= n1

n0

d + 1

d
+ C1

C0

1

d

(
T0

μ0

)2

δm,−1. (C14)

This requirement will be utilized later.

2. Conservation equations

If we again restrict to 1D motion and collect terms by powers of ε, we get the following equations:
Leading order:

∂n1

∂t0
+ γ 2n0u0

∂u1

∂t0
+ u0

∂n1

∂x
+ n0γ

2 ∂u1

∂x
= 0, (C15a)

γ 2 ∂ε1

∂t0
+ γ 2u2

0
∂P1

∂t0
+ 2u0(ε0 + P0)γ 4 ∂u1

∂t0
+ (

1 + u2
0

)
(ε0 + P0)γ 4 ∂u1

∂x
+ u0γ

2 ∂

∂x
(ε1 + P1)

+An0u0γ
2 ∂n1

∂x
+ An2

0u2
0γ

4 ∂u1

∂x
= 0, (C15b)

γ 3(ε0 + P0)
∂u1

∂t0
+ γ u0

∂P1

∂t0
+ u0γ

3(ε0 + P0)
∂u1

∂x
+ γ

∂P1

∂x
+ An0γ

∂n1

∂x
+ An2

0u0γ
3 ∂u1

∂x
= 0. (C15c)

First-order correction:

∂n2

∂t0
+ γ 2n0u0

∂u2

∂t0
+ u0

∂n2

∂x
+ n0γ

2 ∂u2

∂x
= RHS, (C16a)

γ 2 ∂ε2

∂t0
+ γ 2u2

0
∂P2

∂t0
+ 2u0(ε0 + P0)γ 4 ∂u2

∂t0
+ (

1 + u2
0

)
(ε0 + P0)γ 4 ∂u2

∂x
+ u0γ

2 ∂

∂x
(ε2 + P2) + An0u0γ

∂n2

∂x
= RHS, (C16b)

γ 3(ε0 + P0)
∂u2

∂t0
+ γ u0

∂P2

∂t0
+ u0γ

3(ε0 + P0)
∂u2

∂x
+ γ

∂P2

∂x
+ An0

∂n2

∂x
= RHS. (C16c)

Again, we have used the electrostatic coupling A according to Eq. (28). See Appendix D for the terms on the right-hand side.
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3. Leading-order equations

Using ε = Pd and combining equations like(
∂

∂t0
+ u0

∂

∂x

){
Adn0γ

2 ∂

∂x
[Eq. (C15a)] +

(
u0

∂

∂t0
+ ∂

∂x

)
[Eq. (C15b)] − γ

((
d + u2

0

) ∂

∂t0
+ u0(d + 1)

∂

∂x

)
[Eq. (C15c)]

}
gives

0 = γ 2

(
∂

∂t0
+ u0

∂

∂x

){
γ 2(d + 1)P0

(
u2

0 − d
)∂2u1

∂t2
0

− 2γ 2(d + 1)P0u0(d − 1)
∂2u1

∂t0∂x
+ [

Adn2
0 + γ 2(d + 1)P0

(
1 − du2

0

)]∂2u1

∂x2

}
.

(C17)

This wave equation has solutions f (x + v0t0) + g(x − v0t0) with v0 given by

v
(±)
0 = −u0(d − 1)

d − u2
0

±
√

d(
d − u2

0

)
γ 2

√
1 + An2

0γ
2
(
d − u2

0

)
P0(d + 1)

. (C18)

We will take the (+) sign so that v0 = v
(+)
0 ; the other can be recovered by taking u0 → −u0 and v0 → −v0. Further, we restrict

to unidirectional solutions u1(x, t0, t1) = f (x ± v0t0, t1) for a definite choice of ±; here, we choose (+) as well—the other
propagation direction can be recovered by taking v0 → −v0.

For stationary perturbations (v0 = 0), we can solve for u0:

u0 = ±
√

(1/d ) + [
An2

0/P0(d + 1)
]

1 + [
An2

0/P0(d + 1)
] . (C19)

For reference, the velocity of propagation in the absence of a background flow (u0 = 0) is

v0 = ± 1√
d

√
1 + Adn2

0

(d + 1)P0
. (C20)

In general, n1, u1, and P1 have traveling-wave solutions; neglecting solutions of the form f (x − u0t0, t1) that are simply
advected by the background current, we find solutions given by

n1(x, t0, t1) = n1(x + v0t0, t1) + F1(t1), (C21a)

u1(x, t0, t1) = − (u0 + v0)

n0γ 2(1 + u0v0)
n1(x + v0t0, t1) + F2(t1), (C21b)

P1(x, t0, t1)

P0
= d + 1

d

n1(x + v0t0, t1)

n0
+ F3(t1). (C21b)

Here, we have arbitrary functions F1(t1), F2(t2), and F3(t2); by imposing boundary conditions n1 = 0 at x = ±∞, we set
F1 = 0. We will allow U1(t2) := F2(t2) to remain arbitrary; this uniform background current can be superimposed on the soliton
solution as in Sec. IV if desired [59]. In the Dirac regime, we can impose P1 = 0 at x = ±∞ to set F3 = 0; however, for the Fermi
regime, requiring that T0(x, t ) = T0 independent of (x, t ) restricts the relationship between P1 and n1. Hence, we will write F3 as

F3(t1) = δm,−1
1

d

C1

C0

(
T0

μ0

)2

. (C22)

4. First-order corrections

Now considering the first-order corrections, preventing secular growth of the higher-order terms (i.e., n2, u2, etc.) requires
imposing a compatibility condition on the lower-order terms (i.e., n1, u1, etc.). We can manipulate the system as(

∂

∂t0
+ u0

∂

∂x

){
Adn0γ

2 ∂

∂x
[Eq. (C16a)] +

(
u0

∂

∂t0
+ ∂

∂x

)
[Eq. (C16b)] − γ

[(
d + u2

0

) ∂

∂t0
+ u0(d + 1)

∂

∂x

]
[Eq. (C16c)

]}

+ δm,−1γ
1

2

C0

C1

σQ(d + 1)

n0

μ3
0

T 2
0

(
∂

∂x
+ u0

∂

∂t0

)2(
−
(

∂

∂x
+u0

∂

∂t0

)
[Eq. (C16b)] + γ

[(
d + u2

0

) ∂

∂t0
+u0(d + 1)

∂

∂x

]
[Eq. (C16c)]

+ Adn2
0

P0(d + 1)

∂

∂x
{γ u0[Eq. (C16c)] − [Eq. (C16b)]}

)
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to obtain

γ 4P0(d + 1)
(
d − u2

0

)[( ∂

∂t0
+u0

∂

∂x

)
− δm,1γ

1

2

C0

C1

σQ(d + 1)

n0

μ3
0

T 2
0

(
∂

∂x
+ u0

∂

∂t0

)2](
v

(+)
0

∂

∂x
− ∂

∂t0

)(
v

(−)
0

∂

∂x
− ∂

∂t0

)
u2 = LOT,

(C23)

where LOT represents lower-order terms (i.e., n1, u1, etc.).
It is instructive here to change variables to χ

(±)
0 = x + v

(±)
0 t0. Then, the equation becomes

γ 4P0(d + 1)
(
d − u2

0

)
(v(+)

0 − v
(−)
0 )2

⎧⎨
⎩
[∑

±
(u0 + v

(±)
0 )

∂

∂χ
(±)
0

]
− δm,−1γ

3σQ

π2n0d

μ3
0

T 2
0

[∑
±

(1 + u0v
(±)
0 )

∂

∂χ
(±)
0

]2
⎫⎬
⎭

× ∂

∂χ
(−)
0

∂

∂χ
(+)
0

u2 = LOT. (C24)

This is where we encounter an apparent problem. Upon inserting our solutions for the lower-order terms, we find the right-hand
side depends on products and derivatives of f (χ (+)

0 ). This implies that the LOT is solely a function of χ
(+)
0 .

However, we see that functions of the form f (χ (+) ) are also solutions to the homogeneous equation in Eq. (C23) due to the
presence of the ∂

χ
(−)
0

operator. So, products and derivatives of f (χ (+)
0 ) appear as inhomogeneous forcing terms that give rise

to secular terms. For instance, terms proportional to f (4)(χ (+)
0 ) give rise to solutions of the form χ

(−)
0 f (3)(χ (+)

0 ). This grows
unbounded in χ

(−)
0 —and hence, in time t . This will eventually cause |u2| > |u1|, invalidating the perturbation expansion. Thus,

unless LOT vanishes identically, it will give rise to χ
(±)
0 -secular terms in u2—i.e., solutions growing unbounded in t0 or x.

Hence, we require the right-hand side to vanish and we are left with the desired compatibility equation:

0 = (u0 + v0)
∂2

∂χ
(+)2

0

(KdVB[n1]) − δm,−1γ
1

2

C0

C1

σQ(d + 1)(1 + u0v0)2

n0

μ3
0

T 2
0

∂3

∂χ
(+)2

0

(KdVB[n1])

∣∣∣∣
σQ=0

. (C25)

Here, (KdVB[n1]) represents the Korteweg–de Vries–Burgers equation, discussed earlier, acting on n1:

A′ ∂n1

∂t1
+ F ′ ∂n1

∂χ
(+)
0

+ B′n1
∂n1

∂χ
(+)
0

+ C ′ ∂3n1

χ
(+)3

0

− G ′ ∂2n1

χ
(+)2

0

n1 = 0; (C26)

see Appendix F for the functional form of the coefficients. Likewise, (KdVB[n1]|
σQ=0

) represents the Korteweg–de Vries–

Burgers equation without σQ terms.
It is interesting to note the similarities and differences between the adiabatic KdV-Burgers coefficients (Appendix F) and the

isothermal coefficients (Appendix E). For most of the coefficients (A′, B′, and C ′), the adiabatic coefficients are identical to
the isothermal Fermi (m = −1) coefficients. The (1 + u0v0)C1/C0 term in F ′ differs slightly between the adiabatic Fermi case
[coefficient (d + 1)/d2] and the isothermal Fermi case [coefficient (d − 1)/d2]; the adiabatic Dirac case is completely absent
(δm,−1) compared to the isothermal Dirac case. Interestingly, the adiabatic η and ζ terms in G ′ match the isothermal Fermi terms,
while the adiabatic σQ term matches the isothermal Dirac one.

5. Solving the compatibility equation

In the Fermi regime (m = −1), the compatibility equation (C25) no longer has the simple, decaying soliton solution derived
in Sec. IV F. This can certainly be solved numerically. Additionally, we can generate an approximate solution if we assume that
O(σQ) � 1 (but � ε to prevent them from falling to the next order in our perturbation expansion) and use the same trick as we
did in Sec. IV F. Namely, we factor out a small parameter δ ∼ O(σQ) from σQ = δσ̃Q. Then, O(σ̃Q) = 1, and we can expand in
factors of δ.

Then, another short multiple scales expansion for n1 can be done in δ = O(G/A). To be consistent with our original
perturbation series, we require that ε � δ � 1. As usual, we expand n1 as n1 = n(0)

1 + δn(1)
1 and ∂t1 = ∂τ0 + δ∂τ1 . Then, to

leading order, we have

(u0 + v0)∂2
χ

(+)
0

(
KdVB

[
n(0)

1

])∣∣
σ̃Q=0 = 0. (C27)

This is satisfied by the KdVB equation,

L0n(0)
1 := A′∂τ0 n(0)

1 + F ′∂
χ

(+)
0

n(0)
1 + B′

2
∂
χ

(+)
0

(
n(0)

1

)2 + C ′∂3
χ

(+)
0

n(0)
1 − G ′

∣∣∣∣
σ̃Q=0

∂2
χ

(+)
0

n(0)
1 = 0. (C28)
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Now, we further assume that η and ζ are small; specifically, we assume O(η) � 1, ε � O(δ) � O(ζ ). Then, the solution was
found in Sec. IV F upon replacing G ′ with G ′|

σ̃Q=0
:

n(0)
1 (χ (+)

0 , τ0) = c1(τ0)sgn(B′C ′) sech2

(√
c1|B′|
12|C ′|

[
χ

(+)
0 −

(
c1|B′|
3|A′| sgn(A′C ′) + F ′

A′

)
τ0

])
, (C29)

where

c1(τ0) = c1(0)

1 + τ0/τ
(0)
d

(C30)

with

τ
(0)
d = 45A′|C ′|

4c1(0)|B′|G ′|σ̃Q=0
. (C31)

As mentioned above, we have assumed O(δ) � O(G ′/A′|
σ̃Q=0

) � 1, so 1/τ
(0)
d � 1.

At the next order in δ, we must allow the constant c1(0) to become time-dependent on a slow timescale c1(0) = c1(0, τ1).
Now, our equation is

(u0 + v0)∂2
χ

(+)
0

[
A′∂τ0 n(1)

1 + F ′∂
χ

(+)
0

n(1)
1 + B′∂

χ
(+)
0

(
n(0)

1 n(1)
1

)+ C ′∂3
χ

(+)
0

n(1)
1

]
= (u0 + v0)∂2

χ
(+)
0

(−∂t1A′n(0)
1 + ∂4

χ
(+)
0
G ′n(0)

1

)− δm,−1γ
1

2

C0

C1

σQ(d + 1)(1 + u0v0)2

n0

μ3
0

T 2
0

∂χ
(+)
0

3(
KdVB

[
n(0)

1

])∣∣∣∣
σ̃Q=0

= (u0 + v0)∂2
χ

(+)
0

(−∂t1A′n(0)
1 + ∂2

χ
(+)
0
G ′n(0)

1

)
. (C32)

In the last line, we used the fact that n(0)
1 satisfies the KdVB|

σ̃Q=0
equation to simplify the right-hand side. Integrating twice and

dropping constants of integration (we want n(0)
1 = n(1)

1 = 0 to be a solution) gives

L1n(1)
1 := A′∂τ0 n(1)

1 + F ′∂
χ

(+)
0

n(1)
1 + B′∂

χ
(+)
0

(
n(0)

1 n(1)
1

)+ C ′∂3
χ

(+)
0

n(1)
1

= −∂t1A′n(0)
1 + ∂2

χ
(+)
0
G ′n(0)

1 . (C33)

As before, we note that L0 and −L1 are adjoint:∫
dχ

(+)
0

(
n(1)

1 L0n(0)
1 + n(0)

1 L1n(1)
1

) = 0. (C34)

Thus, we get the compatibility condition

(u0 + v0)
∫

n(0)
1

(
A′∂τ1 n(0)

1 − G ′∂2
x n(0)

1 dχ
(+)
0

) = 0, (C35)

which yields the equation

∂τ1 c1(0, τ1) = −c1(0, τ1)2|B′|G̃ ′

|C ′|A′
4

45
. (C36)

Then, solving this equation and converting back to time t1 gives

c1(0, t1) = c1(0, 0)

1 + t1/t (1)
d

(C37)

with

t (1)
d = 45A′|C ′|

4c1(0, 0)|B′|G ′ , (C38)

with c1(0, 0) the initial value of the parameter c1(t0, t1). Combined with the result for c1(t0, t1) [Eqs. (C30) and (C31)],

c1(t0, t1) = c1(0, t1)

1 + t0/t (0)
d

(C39)

with

t (0)
d = 45A′|C ′|

4c1(0, t1)|B′|G ′|σQ=0
, (C40)

we now have a complete solution.
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APPENDIX D: FULL EQUATIONS

All quantities are expressed in normalized, nondimensional form according to the procedures laid out in Sec. III and
Appendix B. The energy conservation equations [Eqs. (D1b) and (D2b)] are only used for the adiabatic setup.

Leading order:

∂n1

∂t0
+ γ 2n0u0

∂u1

∂t0
+ u0

∂n1

∂x
+ n0γ

2 ∂u1

∂x
= 0, (D1a)

γ 2 ∂ε1

∂t0
+ γ 2u2

0
∂P1

∂t0
+ 2u0(ε0 + P0)γ 4 ∂u1

∂t0
+ (

1 + u2
0

)
(ε0 + P0)γ 4 ∂u1

∂x
+ u0γ

2 ∂

∂x
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APPENDIX E: ISOTHERMAL KdV-BURGERS

All quantities are expressed in dimensional form; to get the dimensionless expressions, simply set vF = h̄ = lref = kB = e = 1
and remove all factors of ε. See Appendix A for the values of C0 and C1 and Appendix B for the O expressions. The KdV-Burgers
equation is given by
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If we impose v0 = 0, then the coefficients take the form given in Eq. (60). If instead we impose u0 = U1 = 0, they take the
form
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APPENDIX F: ADIABATIC KdV-BURGERS

All quantities are expressed in dimensional form; to get the dimensionless expressions, simply set vF = h̄ = lref = kB = e = 1
and remove all factors of ε. See Appendix A for the values of C0 and C1 and Appendix B for the O expressions. The KdV-Burgers
equation is given by
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If we impose v0 = 0, then the coefficients take the form given in Eq. (60). If instead we impose u0 = U1 = 0, they take the
form
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with corrections highlighted in bold. For the u0 	= 0 case, Eq.
(34) should be adjusted by flipping the sign of the γ term

multiplying the u0∂xδu term. Furthermore, the dispersion rela-
tion, Eq. (36), should read

s± =
u0(2 − 2ξ0 + γ ) ±

√
s2

0(1 + γ ) + u2
0

[
(2 − 2ξ0 + γ )2 − (1 + γ )

(
3 − 10

3 ξ0 + γ
)]

1 + γ
. (F18)
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