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Abstract. Signals and images recovered from edge-sparsity based reconstruc-
tion methods may not truely be sparse in the edge domain, and often result

in poor quality reconstruction. Iteratively reweighted methods provide some
improvement in accuracy, but at the cost of extended runtime. This paper ex-

amines such methods when data are acquired as non-uniform Fourier samples,

and then presents a new non-iterative weighted regularization method that first
pre-processes the data to determine the precise locations of the non-zero values

in the edge domain. Our new method is both accurate and efficient, and out-

performs reweighted regularization methods in several numerical experiments.

1. Introduction. Data for reconstruction of piecewise smooth functions and im-
ages are sometimes acquired as non-uniform Fourier samples. This is the case in non-
Cartesian magnetic resonance imaging (MRI) and synthetic aperture radar (SAR).
Since sparsity is inherent in the edge (jump discontinuity) domain of piecewise
smooth functions and images, `1 norm based total variation (TV) regularization,
[30], is commonly employed for reconstruction. The development of compressed
sensing, [4, 5, 6, 11], has provided theoretical justification for using `1 regulariza-
tion to promote sparsity in the appropiate domain. In some instances, however,
the reconstructions produced via TV regularization based techniques are not as
sparse in the edge domain as desired. This may be due to non-uniform sampling,
noise, or the fact that the TV transform is not actually sparsifying with respect
to functions that cannot be described as piecewise constant. Specifically, the TV
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transform does not transform all functions to the edge domain. What is likely a
result of a combination of all these factors, the overall accuracy suffers. One popu-
lar approach for correcting this problem is to use an iterative reweighting scheme,
[7, 9, 10, 23, 27, 35, 36]. These employ multiple runs of weighted `p minimization
(typically p = 1 but p = 2 is also an option), where the weights typically help to
locate the non-zero entries in the sparsity domain, and then apply regularization
away from those locations in an iterative manner. Iterative reweighting methods
have been shown to be more accurate than single-run TV methods, [7, 9], and have
been applied to problems where data are acquired as uniform Fourier samples, [7].
The extension of these algorithms is straightforward for non-uniform Fourier data
acquisition, although the implementation requires a non-uniform fast Fourier trans-
form (NFFT), [13, 24, 26], and there are additional errors corresponding to the
resulting fidelity term.1 It is also important to note that in this investigation we
are considering that the data acquired are noisy continuous non-uniform Fourier
samples, which means that using the discrete NFFT generates additional model
mismatch, [1].

This paper provides an alternative strategy to iterative reweighting. We propose
an algorithm for signal and image reconstruction from non-uniform Fourier data that
uses edge detection to indicate regions of sparsity in the TV domain and targets
weighted `2 norm TV regularization appropriately. Unlike iterative reweighting,
which requires multiple iterations of regularized minimization, there are only two
steps to our method. The first step uses an edge detection technique to create a
mask, i.e. a weighting matrix, which dictates where non-zero entries are expected in
the TV domain. The edge map we employ in this paper is created from the Fourier
data by solving an `1-regularized cost function. That said, we note that our method
is compatible with any edge detection scheme and hence can easily be changed for a
specific application. The second step uses this mask to target `2 regularization only
in smooth regions, as specifically identified by the mask. In particular a smooth
region is where the mask indicates zero response in the TV domain. Conversely, a
non-zero TV response is indicated by the mask in edge regions. We clarify that these
terms only specify what the mask indicates, rather than their true classification in
the underlying image or signal. Put another way, our method uses regularization on
targeted areas that are actually expected to be zero in the TV domain. Therefore, if
the edge mask is indeed a good classifier of smooth and edge regions, it is appropriate
to regularize using the `2 norm. Moreover, in edge regions, the method relies solely
on the fidelity term since the mask returns zero weight value there. Finally we note
the efficiency of our method as the reconstruction is performed by minimizing a
single cost function regularized with the `2 (instead of the `1) norm. We call oour
algorithm edge-adaptive `2 regularization.

There are several benefits to our proposed algorithm. First, it compares favor-
ably in terms of accuracy (pointwise error) to iteratively reweighted methods. In
particular, we test against a reweighted TV method similar to that in [7], which
was used to reconstruct the Shepp-Logan phantom from discrete uniform Fourier
coefficients. It also provides better resolution around jumps than iterative reweight-
ing methods. Lastly from the accuracy perspective, this approach is particularly
advantageous when the data contain additive noise, since the fidelity term can be
weighted lightly against the regularization term, which strongly encourages noise
reduction in smooth regions. As noted previously, our method is also more efficient

1This is the case whenever the acquired data are non-uniform Fourier samples, see e.g. [13].
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to implement. Iterative reweighting methods require multiple iterations of solving
regularized cost functions to identify the sparse regions. Our method needs only a
single `1-regularized minimization for the pre-processing edge detection and a single
`2-regularized minimization for the main reconstruction step. Further, we are able
to use faster conjugate gradient descent optimization available for `2-regularized
problems. Finally, there is a closed form solution to our problem, which may be
valuable in some settings.

The rest of the paper is organized as follows: Section 2 covers the necessary back-
ground in image reconstruction from non-uniform Fourier data. Section 3 applies an
iteratively reweighted `1 regularization method to this problem. Section 4 describes
the edge-adaptive approach. Section 5 looks at numerical results. Conclusions and
future work are in Section 6.

2. Preliminaries. In the one-dimensional case, we consider a piecewise smooth
function f : [−1, 1] → R. Suppose we are given a finite sequence of non-uniform
Fourier samples of f ,

f̂(λk) =
1

2

∫ 1

−1
f(x)e−πiλkxdx,(1)

where λk ∈ R and k = −N, . . . , N . Specifically, we look at jittered sampling, defined
by

λk = k +
1− 2ξk

4
,(2)

with ξk ∼ U([0, 1]). We will also consider the case where the underlying Fourier
data in (1) are noisy, given by

(3) f̂η(λk) = f̂(λk) + ηk,

for k = −N, · · · , N . Here ηk ∼ CN (0, σ2), meaning ηk is a complex zero-mean
Gaussian random variable with variance σ2.

In two dimensions, we analogously consider a piecewise smooth function f :
[−1, 1]2 → R. Suppose we are given a finite sequence of non-uniform Fourier samples
of f ,

f̂(λk) =
1

4

∫ 1

−1

∫ 1

−1
f(x, y)e−πiλk1

xe−πiλk2
ydxdy,(4)

where {λk = (λk1 , λk2) : k1, k2 = −N, . . . , N} ∈ R2. The non-uniform jittered
sampling pattern for λk is given by

λk = k +
1− 2ξk

4
,(5)

with ξk ∼ U([0, 1])2. The sampling patterns in (2) and (5), displayed in Figure 1,
simulate Cartesian grid samples with slight deviations that sometimes occur in real
world measurement systems.2 We will also consider noisy two-dimensional Fourier

data, f̂η(λk), defined analogously to (3).
For ease of presentation, we begin by describing some known techniques for

piecewise smooth function reconstruction in the one-dimensional case, where the

2More non-uniform sampling patterns, such as those that result from spiral MRI, are discussed
in [17]. Our new technique is applicable in these cases, but for ease of presentation are not

considered here.
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Figure 1. Non-uniform sampling λk as in (5).

acquired data are given in (1). These methods are easily extended to reconstruct
two-dimensional images, which will be demonstrated in Section 3.

Let f = {f(xj) : j = −J, . . . , J} and f̂ = {f̂(λk) : k = −N, . . . , N}. Since the
underlying function f is piecewise smooth, it is sparse in the edge domain. That is,
the number of jump discontinuities in the function is many fewer than 2J+1. Hence
`1 regularization provides an effective means for its reconstruction. In particular,
f can be determined on a set of discrete grid points by solving the unconstrained
optimization problem given by

f∗ = arg min
g

(
||Fg − f̂ ||22 + λ||Tg||1

)
.(6)

Here F is the NFFT matrix (see e.g. [24, 26] for details about NFFT solvers), λ > 0
is the regularization parameter that balances fidelity, noise reduction, and sparsity,
and T is a transformation to the edge domain. The choice of λ is typically problem
dependent, [28]. We note that in this investigation we used single digit accuracy for
the NFFT algorithm.

If f is a piecewise constant, for example a cross section of the Shepp Logan
phantom seen in Figure 13, then the edge domain of f is precisely the TV domain
of f . Hence, a standard choice for reconstruction is to solve the TV-regularized
optimization problem

f∗ = arg min
g

||Fg − f̂ ||2 + λ

J−1∑
j=−J

|gj+1 − gj |

 ,(7)

which is frequently written as

f∗ = arg min
g

(
||Fg − f̂ ||2 + λ||Dg||1

)
.(8)

Here D is simply the matrix that encodes the entry information from the sum in
(7). Note that the sparsifying transformation in (8) is an approximation to the
first derivative, penalizing high gradients in the function and therefore encouraging
sparsity in the TV domain.
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If f is a sparse signal, e.g. a spike train, then a standard reconstruction is the
solution to the `1 regularized optimization problem

f∗ = arg min
g

(
||Fg − f̂ ||2 + λ||g||1

)
.(9)

Finally, if f can be modeled as a piecewise polynomial, then a suitable regular-
ization choice is high order total variation (HOTV), [1, 8], yielding

f∗ = arg min
g

(
||Fg − f̂ ||2 + λ||Lmg||1

)
.(10)

Here Lm is the mth order polynomial annihilation (PA) transform, [1, 2]. In general,
Lm can be viewed as a normalized appproximation of the mth derivative.3 For
example, when m = 3 we have

L3 =


− 1

2
3
2 − 3

2
1
2 0 · · · 0

0 − 1
2

3
2 − 3

2
1
2 · · · 0

...
. . .

. . .
. . .

. . .

0 · · · 0 − 1
2

3
2 − 3

2
1
2

 .(11)

Using L0 = I gives (9), while using L1 yields (7). Hence, going forward we will
refer to a signal or image transformed by Lm as being in the gradient domain, and
(10) as HOTV regularization.

Observe that the polynomial annihilation (PA) transform annihilates polynomials
of degree m− 1 in smooth regions. Thus using m = 1 is best for piecewise constant
functions, m = 2 for piecewise linear functions, etc. In Section 5 we demonstrate
that our method is robust to different choices of m. Finally we note that our method
can be readily adapted for other sparsifying transformations.

For square two-dimensional images, we regularize in the x and y directions sep-
arately and solve

f∗ = arg min
g

(
||Fg − f̂ ||2 + λ

(
||Lmg||1 + ||g(Lm)T ||1

))
,(12)

where g is N × N , F is the 2D Fourier transform, and f̂ contains the collected
2D Fourier coefficients. Observe that norms in the 2D case are taken after vertical
concatenation of the matrices. The regularization term ||Lmg||1 penalizes gradients
in the y direction and the regularization term ||g(Lm)T ||1 penalizes approximate
gradients in the x direction.4 This is effectively an anisotropic (high order) TV
formulation.

Remark 1. We choose the anisotropic rather than the isotropic formulation (see
e.g. [30]) for several reasons. First, the separability of the directional penalties
makes for a more cost effective minimization, which is not possible with isotropic
TV. Second, the anisotropic PA transform formulation gives the possibility for high
order derivative approximations, which better approximate the true edge domain
in cases where the function to be reconstructed is not piecewise constant. Lastly,

3Indeed, although there are subtle differences in the derivations and normalizations, the PA

transform can be thought of as a variant of HOTV. Because part of our investigation discusses
parameter selection, which depends explicitly on ||Lmf ||, we will exclusively use the PA transform
as it appears in [1] so as to avoid any confusion. Explicit formulations for the PA transform matrix

can also be found in [1].
4The PA matrix Lm can be constructed for two dimensional images, [2]. However, in [1] it was

demonstrated that splitting the dimensions was more cost effective and did not reduce the quality
of the reconstruction.
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while in unweighted schemes isotropic TV regularization is typically more accurate
than anisotropic TV regularization, there is evidence that in the context of weighted
TV regularization based on edges that the anisotropic is superior. For example, an
iteratively reweighted method based on edge sparsity is proposed in [25], where both
isotropic and anisotropic TV formulations are considered. The authors demonstrate
that for edge-weighting methods, anisotropic TV is more accurate than the isotropic
version. Hence we limit our investigation here to the anisotropic case simply to
demonstrate the value of edge adaptive `2 regularization. In future investigations,
we will also consider the isotropic formulation.

As noted previously, using (10) is effective in reconstructing piecewise smooth
functions and images in a large number of applications. For a variety of reasons,
however, the assumption that the function or image is sparse in the edge domain
is often flawed. One reason is noise, which will immediately degrade the edge
sparsity of the solution to (10). For TV regularization, the assumption that the
transformed image is sparse is often inadequate due to smooth variation away from
jump discontinuities. This is somewhat mitigated by HOTV regularization with
m > 1. However, if due to lack of resolution the image has variation not accounted
for away from discontinuities, even high order transformations will not produce
the desired sparsity. Another source of error is non-uniform sampling, since some
compromise in accuracy is necessary to maintain the efficiency of the NFFT. Finally,
all `1 based methods suffer from the fact that the `1 norm penalizes large magnitudes
more heavily, therefore affecting large jump discontinuities more than small ones.
This is of particular concern when there are multiple scales in the function.

A popular approach to mitigating error from issues such as noise, lack of res-
olution, and magnitude dependence is to use a scheme that employs iteratively
reweighted (IR) regularization, [7, 9, 10, 23, 27, 35, 36]. In these methods, multiple
passes of TV or HOTV regularization with weighted `p norms are used to “narrow
in” on large values in the gradient domain. The weight at each point on the spatial
grid is typically inversely proportional to the magnitude of that point in the gradi-
ent domain of the previous iteration. That is, the regularization is more strongly
enforced at points deemed by weighting as non-jumps and more weakly enforced
at those identified by the weighting as jumps. In this way, iterative reweighting
more democratically penalizes high gradients and regularizes based on the spatial
distribution of the sparsity. These iterative methods are typically more accurate
than single pass methods, [7, 9]. We will use the next section to discuss IR methods
in more detail.

3. Iteratively reweighted regularization methods. As explained in [4], recon-
structing an image or function via solving

f∗ = arg min
g

(
||Fg − f̂ ||22 + λ||Lmg||0

)
,(13)

where || · ||0 counts non-zero values, promotes the most sparsity in the gradient do-
main of the image. However, this combinatorial problem is NP-hard. In (10), the `1
term acts as a convex surrogate for the `0 term, making the problem easier to solve.
However, it does not encourage sparsity in the gradient domain as much. Naturally,
this begs the question of whether there are better surrogates that generate solvable
optimization problems.

Inverse Problems and Imaging Volume 13, No. 5 (2019), 931–958
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The approach of [7] is to regularize using the log-sum function, a concave penalty
function that more closely resembles the `0 norm and is therefore more sparsity-
inducing. That reconstruction would be the solution to the optimization problem

f∗ = arg min
g

||Fg − f̂ ||22 +

J∑
j=−J

log(|(Lmg)j |+ ε)

 ,(14)

where ε > 0 is a small parameter to stay within the domain of the logarithm.
Since the log-sum function is nonconvex, (14) is difficult solve. Instead, we can
approximate it with a series of weighted `1 based minimizations of the form

f∗ = arg min
g

(
||Fg − f̂ ||22 + λ||WLmg||1

)
,(15)

where W is a diagonal matrix of weights. The main idea is that large weights can
be used to discourage non-zero entries in the gradient domain, while small weights
can be used to encourage non-zero entries. Hence this method will penalize non-
zero gradient magnitudes more fairly, removing the magnitude dependence of the
unweighted `1 norm. To achieve this, weights inversely proportional to the gradient
magnitudes of the previous iteration are used. In this way, IR methods encourage
sparsity in the gradient domain by regularizing less heavily in regions where jumps
are suspected and more heavily in regions where no jumps are suspected.

Algorithms 1 and 2 are modified versions of the iterative weighting method used
in [7] for one- and two-dimensional functions, respectively. They are formulated
using the PA transform Lm. When m = 1, we will refer to Algorithms 1 and 2
as reweighted total variation (RWTV) methods. For m ≥ 2, they will be called
reweighted high order total variation (RWHOTV) methods.

Algorithm 1 IR `1 regularization reconstruction in one dimension

1: Set ` = 0 and w
(0)
j = 1 for j = −J, . . . , J . Fix the regularization parameter

ρ > 0, the weighting parameter ε > 0, and an appropriate PA order m.
2: Solve the weighted regularization minimization problem

f (`) = arg min
g

(
||Fg − f̂ ||22 + ρ||W (`)Lmg||1

)
(16)

where W (`) = diag(w(`)).
3: Update the weights. For each j = −J, . . . , J ,

w
(`+1)
j =

1

|(Lmf (`))j |+ ε
.(17)

4: Terminate on convergence or when ` attains a pre-specified maximum number
of iterations `max. Otherwise, increment ` and go to step 2.

As explained in [7], the main advantages of this method are increased accuracy
using the same number of Fourier coefficients and removal of magnitude dependence
of the unweighted `1 norm. A chief example of when this method works very well is
found in Section 3.6, in particular Figure 10, of [7]. These advantages are balanced
with some disadvantages. The runtime is increased `max times for this method, since
each iteration requires an `1 minimization step. In addition, this method introduces
another parameter ε. No comprehensive method for choosing this parameter is
provided in [7] and the success of this algorithm depends on an appropriate choice.

Inverse Problems and Imaging Volume 13, No. 5 (2019), 931–958
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Algorithm 2 IR `1 regularization reconstruction in two dimensions

1: Set ` = 0 and v
(0)
i,j = 1 for i, j = −J . . . J and w

(0)
i,j = 1 for i, j = −J . . . J .

Fix the regularization parameter ρ > 0, the weighting parameter ε > 0, and an
appropriate PA order m.

2: Solve the weighted regularization minimization problem

f (`) = arg min
g

{
||Fg − f̂ ||22

+ ρ

 J∑
i=−J

J∑
j=−J

v
(`)
i,j |(L

mg)i,j |+
J∑

i=−J

J∑
j=−J

w
(`)
i,j |(g(Lm)T )i,j |

}(18)

3: Update the weights. For each (i, j) such that i, j = −J, . . . , J ,

v
(`+1)
i,j =

1

|(Lmf (`))i,j |+ ε
and w

(`+1)
i,j =

1

|(f (`)(Lm)T )i,j |+ ε
.(19)

4: Terminate on convergence or when ` attains a pre-specified maximum number
of iterations `max. Otherwise, increment ` and go to step 2.

Finally, there still appear to be clear sources of error generated by this method,
which we will now explore.

As prototype examples to test the IR methods, we consider

Example 1.

f1(x) =

{
cos(x/2) x ≥ 0
− cos(x/2) x < 0

,(20)

Example 2.

f2(x) =


3
2 − 3π

4 ≤ x < −
π
2

7
4 −

x
2 + sin(7x− 1

4 ) −π4 ≤ x <
π
8

11x
4 − 5 3π

8 ≤ x <
3π
4

0 else

,(21)

and

Example 3.

f3(x, y) =

{
cos(π(x2 + y2)) x2 + y2 ≤ 1

2
cos(π(x2 + y2)− π

2 ) x2 + y2 > 1
2

.(22)

One issue with Algorithms 1 and 2 is that when noise is present there are non-
zero weights being applied in areas of smooth variation (and no variation), resulting
in what amounts to false jump identifications and ultimately oscillation in the re-
construction. The oscillations caused by noise in the initial solution are propagated
through all the iterations via the weighting matrix. The algorithm has no way to
validate whether these oscillations are from actual smooth variation, a jump dis-
continuity, or noise. Figure 2 demonstrates the use of Algorithm 1 for f1(x) and
f2(x) when the given Fourier data (1) is noise-free and when complex zero-mean
Gaussian noise is added as in (3). Notice how the oscillations in the reconstruction
increase where the function has more smooth variation.

The source of this error is from points weighted between 0 and 1
ε . These weights

can indicate either a small jump discontinuity or smooth variation that is beyond

Inverse Problems and Imaging Volume 13, No. 5 (2019), 931–958
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Figure 2. f1(x) (top) and f2(x) (bottom) reconstructed via Al-
gorithm 1 using m = 1 from 257 Fourier modes on 257 grid points.
The red reconstructions indicate recovery from noise-free data as
in (1), while yellow reconstructions are recovered from Fourier co-
efficients with zero-mean complex Gaussian noise added as in (3).
Here we use a signal to noise ratio (SNR) of 20 dB. For f1(x), we
used parameters ρ = 1, `max = 25, and ε = 1.9. For f2(x), we used
parameters ρ = 1, `max = 25, and ε = 2.9.

the resolution of the problem, which may or may not be attributable to noise. If
there is a small jump, the iterative reweighting strategy still regularizes at that
point, albeit relatively less. If it is caused by noise or more simply smooth variation
in the function itself, then the algorithm regularizes less at that point for no reason.
This will automatically reduce the algorithm’s ability to separate the true scales of
the underlying image by causing what amounts to false jump identifications, leading
to an overall less accurate reconstruction.

Figure 3. (Left) 257 × 257 pixel function f3(x, y); (Middle) re-
construction via Algorithm 2 with m = 2 from 257 × 257 jittered
Fourier coefficients on 257×257 grid points; (Right) pointwise error
plotted on a logarithmic scale. The algorithm parameters used are
ρ = .01, ε = .9, and `max = 5.

A two-dimensional example of this phenomenon can be seen in Figure 3, which
shows a reconstruction via Algorithm 2 of the 257 × 257 pixel function f3(x, y).
Figure 4 elucidates the cause of these inaccuracies. The left image shows the ideal
weights wi,j as in (19). By ideal, we mean computed using (19) directly from the
exact function f3(x, y). The goal of Algorithm 2 is to converge to these weights,
since that would mean the algorithm generated f (`) very close to the true f3(x, y).
On the right we display the actual weights wi,j computed by Algorithm 2. The

Inverse Problems and Imaging Volume 13, No. 5 (2019), 931–958
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Figure 4. (Left) Ideal weighting matrix for the y-direction edges
computed from (19) using the exact 257 × 257 two-dimensional
function f3(x, y); (Right) final weighting matrix for the y-direction
edges produced by Algorithm 2. The minimum weight of 0 is indi-
cated by black while maximum weight of 1

ε ≈ 1.11 is indicated by

white, while gray indicates a weight in between 0 and 1
ε .

black or gray points in the right weighting matrix different from those obtained by
the ideal left weighting matrix are effectively being identified by Algorithm 2 as
either a jump or variation beyond the resolution of the problem. Since there are no
jumps outside of the black area in this function, this weighting matrix shows that
the algorithm is falsely identifying many jumps. In this context, that means that
this algorithm is regularizing less in areas it shouldn’t be, which leads to an overall
less accurate reconstruction.

In what follows we demonstrate how Algorithms 1 and 2 can be improved upon
in terms of accuracy, simplicity, efficiency and robustness.

4. Edge-adaptive `2 regularization. As discussed in [7], without prior informa-
tion about the non-zero elements in a sparse signal or similarly the locations of
edges in an image, it is effective to choose regularization weights iteratively. How-
ever, when starting with Fourier data the weighting scheme adopted by Algorithms
1 and 2 is likely not the most direct way to penalize non-zero locations in the spar-
sity domain. Therefore we take a more direct approach. Specifically we locate the
edges directly from the Fourier data, as in [17], and then construct the regulariza-
tion weights to be zero-valued anywhere an edge is detected and non-zero at all
other points. Unlike iterative reweighting, which requires multiple `1 minimiza-
tions, there are only two minimization steps in our new method. First, we perform
an `1 regularization based edge detection to determine where the support is in the
sparsity domain. We note that while `1-regularized edge detection is a good choice
for non-uniform Fourier data, our method is flexible and allows the edge map to be
generated however the user prefers for their specific application. We then create a
mask, i.e. a weighting matrix, based on the detected edges. This mask allows us
to target `2 regularization only to smooth regions of the function in a second mini-
mization step. Recall that here smooth regions are those which the mask indicates
are zero in the sparsity domain. In this way, our method uses regularization on
regions which the edge detection suggests have zero intensity. Therefore the usual
compressed sensing arguments for using the `1 norm as a surrogate for the `0 norm

Inverse Problems and Imaging Volume 13, No. 5 (2019), 931–958
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no longer apply. In particular, it is just as appropriate to use the `2 norm to mini-
mize something that is supposed to be zero rather than sparse, and it is much more
cost efficient than using the `1 norm. We note that the method relies solely on the
fidelity term in the edge regions, which recall are the regions the mask indicates
should be nonzero in the gradient domain. We note again that the edge and smooth
region labels do not indicate regions with or without a true jump discontinuity, and
are only as faithful to such a designation as the mask and the edge detection used
to create it.

4.1. Edge detection from non-uniform Fourier data. The edge adaptive `2
regularization image reconstruction technique depends heavily on the selection of
a weighting mask, which is explicitly determined by the edges recovered from the
given non-uniform Fourier data. While there have been a number of algorithms
designed to extract edges from Fourier data, we will use the concentration factor
(CF) method introduced in [18] for uniformly sampled Fourier data and adapted in
[17] for the non-uniform case. It is briefly described below.

Let us first consider a one-dimensional periodic piecewise smooth function f :
[−1, 1]→ R. We define the jump function, [f ], as

[f ](x) = f(x+)− f(x−),(23)

the difference between the left- and right-hand limits of the function. For x at which
f is continuous, [f ](x) = 0. At a discontinuity, [f ](x) is the signed magnitude of the

jump. Suppose we are given 2J + 1 grid points, xj = j
J , j = −J, . . . , J . Assuming

that the discontinuities {ξl}Ll=1 of f are separated such that there is at most a single
jump per cell, Ij = [xj , xj+1), we can write

[f ](x) =

J−1∑
j=−J

[f ](xj)δxj
(x).(24)

where the coefficients [f ](xj) is the value of the jump that occurs within the cell Ij
and δξ(x) is the indicator function with δξ(x) = 1 when x = ξ and 0 otherwise.

The concentration factor (CF) edge detection method, [15, 18, 19, 20], approx-
imates (24) from the first 2N + 1 uniform Fourier coefficients given in (1) where
λk = k as

SσN [f ](x) = i

N∑
k=−N

f̂(k)sgn(k)σ(k)eπikx.(25)

Here σ = σ(k)Nk=−N , coined the concentration factor in [18], satisfies certain admis-
sibility conditions. The convergence of (25) depends on the particular choice of σ.
The concentration factor σ is effectively a bandpass filter that concentrates at the
singular support of the underlying function. Hence (25) is a filtered partial Fourier
sum that approximates the jump function. However, there is a lot of flexibility in
how σ may be chosen. We delay explaining this choice, though, as significantly the
CF edge detection method cannot be extended directly to non-uniform Fourier co-
efficients because {eπiλkx}Nk=−N is not an orthogonal basis. In the next subsection,
we explain the modifications needed to apply CF edge detection to non-uniform
Fourier data, as well as how to optimally design a concentration factor for this
application.
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4.1.1. Concentration factors for non-uniform Fourier data. For ease of presenta-
tion, let us first assume that there is only one discontinuity at x = ξ ∈ (−1, 1). The
extension to general piecewise functions is straightforward. The jump function in
(24) is now simply

(26) [f ](x) = [f ](ξ)δξ(x).

As described in [17], it is possible to project the non-uniform Fourier data onto
{eimπx}Mm=−M as

(27) TNf =
∑
|m|<M

∑
|k|<N

f̂(λk)bm,ke
iπmx.

Here bm,k is the (m, k)th entry of the Moore-Penrose pseudo-invese of the matrix
given by

Ψ = [〈eπiλkx, eπimx〉], |m| ≤M , |k| ≤ N .

Note that

〈eπiλkx, eπimx〉 =

∫ 1

−1
eπi(λk−m)x = 2sinc(λk −m).

We remark that other projections are also possible, and may lead to faster and
more robust approximations, see [16]. For our purposes the projection given by
TNf , which is simply a uniform resampling (URS) approximation (see e.g. [29]), is
appropriate.5 To approximate the jump function from non-uniform coefficients, we
can use (27) and seek σ such that

(28) TσNf(x) =
∑
|k|<N

σ(k)f̂(λk)ϕ̃M,k(x) ≈ [f ](ξ)δξ(x).

where ϕ̃M,k(x) =
∑
|m|≤M bm,ke

iπmx. Note that we have folded in isgn(k) into σ(k).

Observe that if f is piecewise-analytic, it can be approximated by a scaled and
shifted ramp function given by

(29) f(x) ≈ arξ(x).

Here rξ(x) = r(x− ξ) for ξ ∈ (−1, 1) with

r(x) =

{
−x+1

2 if x ∈ [−1, 0]
−x−12 if x ∈ (0,−1],

(30)

and a corresponds to the jump value [f ](ξ), that is [f ](ξ)δξ(x) = a[rξ](x). Hence it
is apparent that while (29) is only a first order approximation of f(x), it is perfectly
reasonable to compute [f ](x). Specifically, from (29) we have

(31) [f ](x) = [f ](ξ)[rξ](x).

Using (31) in (28) we have

(32) [f ](ξ)TσNrξ(x) = [f ](ξ)
∑
|k|≤N

σ(k)r̂ξ(λk)ϕ̃M,k(x) ≈ [f ](ξ)δξ(x),

where r̂ξ are the Fourier coefficients of rξ(x). Translating this system yields

(33)
∑
|k|≤N

σ(k)r̂(λk)ϕ̃M,k(x) ≈ δ0(x),

5As noted in [17], to ensure that Ψ is not ill-conditioned, one must choose M to reflect the
amount of non-uniformity in the original sampling. Since only jittered sampling is discussed in

this investigation, choosing M = N is reasonable.
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where r̂(λk) are the Fourier coefficients of r(x) explicitly given by

(34) r̂(λk) =

{
0 λk = 0
(sin (πλk)−πλk)i

(πλk)2
otherwise.

As was demonstrated in [17], one possibility to obtain the concentration factor
vector σ is to solve (33) as a linear system on the set of grid points xj , j = −J, · · · , J .
This may be preferred when λk is sampled sparsely (i.e. not a jittered sampling
pattern), but as is demonstrated below, an explicit solution for the concentration
factor σ can also be directly obtained from (33).

We note that it is difficult to approximate δ0(x) from (33) since it only has non-
trivial values on a set of measure zero and therefore does not have a non-trivial
Fourier expansion. Hence we first regularize the problem by introducing a smooth
function h0(x) ≈ δ0(x). For example, in our experiments we employ

h0(x) =
1

2N + 1

(
2

sin(Nπx)

πx
− 1

)
,(35)

which has some beneficial cancellation properties in the uniform case (λk = k) when
the SNR is high, [19]. On the other hand, using a Gaussian function

h0(x) = exp

(
−α

(
x

β

)2
)

reduces the effects of noise but does not resolve the discontinuities as well. In [17]
α = 5 and β = .7 were found to work well. We note that in our testing with jittered
data we found little difference in performance, and in general used (35).

With h0(x) in hand, we replace δ0(x) with the approximation
∑
|k|≤N ĥ(λk)ϕ̃M,k

(x) in (33), where ĥ(λk) are the Fourier coefficients of h0(x). This leads to the
explicit expression for σ:

σ(k) =
ĥ(λk)

r̂(λk)
, k = −N, · · · , N.

In our experiments we used (35) which explicitly yields σ(k) = 2iπλk

2N+1 for each
k = −N, · · · , N .

4.1.2. Sparsity forward model for edge detection. Now that we have an explicit
epression for σ, we are able to derive a forward model for edge detection. Here
we use the sparsity model developed in [17], which is based on the waveform match-
ing idea developed in [34] for uniform Fourier data. This approach allows us to
build a forward model for reconstructing [f ](x) using convex optimization on an
`1-regularized cost function. From [17], for non-uniform Fourier data, the waveform
kernel is given by

Wσ
N(M)(x) =

1

γσN(M)

M∑
k=−M

σkr̂(λk)ϕ̃N,k(x) =
1

γσN(M)

M∑
k=−M

N∑
l=−N

σkr̂(λk)bl,ke
iπlx,

where

γσN(M) =

M∑
k=−M

N∑
l=−N

bl,kσkr̂(λk)

is the normalization constant. We then approximate

Wσ
N(M) ∗ [f ] ≈ TσM (f),
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which is satisfied by holding

1

γσN(M)

M∑
k=−M

bl,kσkr̂(λk)[̂f ](l) ≈
M∑

k=−M

bl,kσkf̂(λk), l = −N, . . . , N.

Therefore the waveform kernel approach promotes the construction of the model

1

γσN(M)

(B(σ · r̂)) · (F[f ]) ≈ B(σ · f̂)

where B is the matrix with entries bl,k given in (27), · denotes elementwise multi-
plication, and F is the Fourier transform. This model can be written simply as

A[f ] ≈ y(36)

where

A =
1

γσN(M)

diag [B(σ · r̂)] F and y = B(σ · f̂).

We now have all of the ingredients needed to approximate [f ](x) on a set of grid
points. The following equation combines the model in (36) with `1 regularization to
construct an approximation to [f ](x) as the solution to the optimization problem
(see Algorithm 4 in [17]) which is given by

g∗ = arg min
g

(||Ag − y||2 + µ||g||1) .(37)

The cost function is `1-regularized to promote the sparsity of the edge function
vector g, with µ > 0 being the regularization parameter. Figure 5 demonstrates
the use of (37) on f1(x) and f2(x).

Figure 5. (Left) f1(x) and f2(x); (Middle) Jump function approx-
imations using (37); (Right) Jump function approximations with
additive noise starting from (3) with SNR = 20 dB. Here we use
257 reconstruction points, 257 jittered Fourier modes, and regular-
ization parameter µ = 1.

In two dimensions, the jump functions in the x and y directions may be approx-
imated by the respective solutions to the optimization problems

g∗x = arg min
g
||Ag − y||2 + µ||g||1

g∗y = arg min
g
||gAT − y||2 + µ||g||1,(38)
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where σx(k) =
2iπλk1

2M+1 and σy(k) =
2iπλk2

2M+1 , k1, k2 = −M, · · · ,M , are used to cre-
ate the corresponding A and y for each direction. Figure 6 shows the result for
approximating [f3](x, y).

Figure 6. Edge detection (center and right) in the x and y direc-
tions using (38) for f3(x, y) (left). Here we use 257 × 257 jittered
Fourier modes, 257× 257 reconstruction points, and regularization
parameter µ = 1.

Of course, edge detection from non-uniform Fourier data is itself an important
tool in identifying physical structures in images or signals. Thus a potential byprod-
uct of our new reconstruction algorithm is that it produces an accurate edge map
that is computed en route to reconstruction. Moreover, it can also act as a cross-
validation for the reconstruction.

4.2. Edge-adaptive `2 regularization image reconstruction algorithm. Once
the edge map is formed via (37), (38), or with another method specific to the user’s
application, the edge-adaptive `2 regularization reconstruction method begins with
the creation of a mask, or weighting matrix. The edge detection process described
above is critical in determining the weighting mask for the regularization term,
and is even more important when the given data are noisy. The edge mask will
enable us to adapt the regularization parameter to weight relatively lightly on fi-
delity in smooth regions and heavily on fidelity in edge regions where we have more
confidence that there are non-zero values in the gradient domain. The mask cre-
ation process is described below, with the first step detailed in Algorithm 3 for the
one-dimensional case and Algorithm 4 for the two-dimensional case.

For the purposes of mask creation, we need only a binary edge map indicating
whether or not an edge has been detected at a given grid point. In one dimension,
this is easily generated as

yj =

{
1 if |g∗j | > τ
0 otherwise,

j = −J, . . . , J.(39)

Here g∗ is determined from (37) and τ is a user-defined threshold which is explained
below. In two dimensions, we generate the binary edge maps as

xi,j =

{
1 if |(g∗x)i,j | > τ
0 otherwise,

i, j = −J, . . . , J.

and

yi,j =

{
1 if |(g∗y)i,j | > τ
0 otherwise,

i, j = −J, . . . , J.
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where g∗x and g∗y are determined from (38).
Because the mth order PA transform will be used in the regularization term for

the reconstruction procedure, the corresponding regularization mask must include
a stencil surrounding each nonzero value. This is because the PA transform forms
an oscillatory response in the m + 1 point stencil surrounding the nonzero value.
For example, when using L3 in (11), there is an oscillatory response in 4 points
surrounding a nonzero value. It is possible to simply define the mask to include
the m+ 1 points in either direction of the found edge. However, this would require
some bookmarking. Hence instead we use a second process to recover the response
of applying Lm to the binary edge map. The latter steps in Algorithms 3 and 4
demonstrate this process.

Algorithm 3 Mask creation in one dimension

1: Starting from Fourier data as in (3), reconstruct the jump function, [f ], using
equation (37) as g∗.

2: For each index j = −J, . . . , J such that |g∗j | > τ , set yj = 1. Else, yj = 0.
3: For each index j = −J, . . . , J such that |(Lmy)j | > 0, set zj = 0. Else, zj = 1.

The mask is M = diag(z).

Algorithm 4 Mask creation in two dimensions

1: Starting from Fourier data as in (4), reconstruct the jump functions in the x
and y directions using equations (38) as g∗x and g∗y.

2: For each index i, j = −J, . . . , J such that |(g∗x)i,j | > τ , set xi,j = 1. Else,
xi,j = 0.

3: For each index i, j = −J, . . . , J such that |(g∗y)i,j | > τ , set yi,j = 1. Else,
yi,j = 0.

4: For each index i, j = −J, . . . , J such that |(Lmx)i,j | > 0, set Mx
i,j = 0. Else,

My
i,j = 1. The x direction mask is the matrix Mx.

5: For each index i, j = −J, . . . , J such that |(y(Lm)T )i,j | > 0, set My
i,j = 0. Else,

My
i,j = 1. The y direction mask is the matrix My.

Remark 2. A thresholding parameter τ has been introduced in Algorithms 3 and
4. However, our experiments demonstrate that the method is robust for a wide
range of τ . Indeed, for the example in Figure 5, (nearly) exact edge locations were
recovered for τ ∈ [0,min [f ](x)). This robustness is due to the fact that most values
resulting from (37) and (38) are indeed zero as these equations encourage sparsity.
In this way, τ simply propagates the edge detection result to the mask. Although
τ is function dependent, as a heuristic for choosing τ , we propose that it should
be inversely proportional to the number of grid points (e.g. 1

2J+1 ), as with better
resolution we should be able to detect smaller magnitude jumps and include them
in the mask. We can further specify τ in terms of PA order m, as was discussed
in Theorem 3.3 in [2]. However, when noise is present, such precise thresholding
based on grid resolution and PA order is not as effective, as ultimately the threshold
will depend on the signal to noise ratio. In our experiments we typicaly chose τ as
proportional to 1

2J+1 .
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To be clear, Algorithms 3 and 4 create binary masks that dictate suspected
nonzero locations in the gradient domain of the signal or image to be reconstructed.
At this stage, the mask has been formed. The next step is to use the mask to tar-
get regularization only in smooth regions, recalling that earlier we defined smooth
regions to be where the mask is nonzero. This simply involves weighting the regu-
larization term with the mask. Put another way, our method uses regularization on
targeted areas that we actually expect to be zero in the gradient domain. Therefore,
with a properly chosen mask, it is appropriate to regularize using the `2 norm since
we no longer require a sparsity-encouraging norm. Using `2 makes the algorithm
much more cost efficient. In edge regions where the mask is zero, our method relies
solely on the fidelity term. Reconstruction of both the smooth and edge regions are
performed by minimizing a single cost function.

As a further justification for using `2, observe that minimizing ||MLmg||22 in is
akin to setting up the usual sparsity constraint, which requires Lmg to have only a
few non-zero values, or more precisely, values above a chosen threshold. However, by
employing the mask, we expect no non-zero values, making the `2 norm appropriate.
The result is Algorithm 5 for one-dimensional signals and Algorithm 6 details the
algorithm for two-dimensional functions and images.

Algorithm 5 Edge-adaptive image reconstruction in one dimension

1: Construct the mask, M , using Algorithm 3.
2: The edge-adaptive `2 regularization image reconstruction is the solution to the

optimization problem,

f∗ = arg min
g

(
||Fg − f̂ ||22 + λ||MLmg||22

)
,(40)

where λ > 0 is the regularization parameter.

We note that (40) has a closed form solution

f∗ =
(
FTF + λ(Lm)TMLm

)−1 FT f̂ .(41)

This closed form may be valuable in some contexts. As the size of the problem
increases, however, the inversion in (41) becomes more computationally expensive,
so in Section 5 we take advantage of the conjugate gradient descent method [22].

Algorithm 6 Edge-adaptive image reconstruction in two dimensions

1: Construct the masks, Mx and My, using Algorithm 4.
2: The edge-adaptive `2 regularization image reconstruction is the solution to the

optimization problem,

f∗ = arg min
g

(
||Fg − f̂ ||22

+ λ

 J∑
i=−J

J∑
j=−J

Mx
i,j(L

mg)2i,j +

J∑
i=−J

J∑
j=−J

My
i,j(g(Lm)T )2i,j

 ,
(42)

where λ > 0 is the regularization parameter.

Observe that unlike the iterative weights described in Section 3, the weighting
masks generated by Algorithms 3 and 4 are binary. As our numerical results will
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show, accuracy is improved since in general we do not falsely identify smooth vari-
ation or noise as jumps like the IR methods described in Section 3. Our numerical
results will also show improved resolution around jumps, better noise reduction in
smooth areas (see Figure 17), and better efficiency including a justification of using
the `2 norm.

5. Numerical results. In the numerical experiments that follow we compare the
edge-adaptive `2 regularization image reconstruction given by Algorithms 5 and 6 to
the iteratively reweighted method of Algorithm 1 and 2. We use the Split Bregman
method, [21, 37] to implement the minimization step in Algorithms 1 and 2. We
follow the recommendation in [7] in choosing the parameter ε to be slightly smaller
than the expected nonzero magnitudes of Lmf , since this will provide the necessary
stability to correct for inaccurate coefficient estimates while still improving upon
the unweighted TV algorithm. We note that in [9] it is shown that updating ε
in each iteration yields superior results for the problem of sparse signal recovery.
However, since this is not applicable for functions with more variation, we did
not consider this adaptive approach. Algorithms 5 and 6, which only require `2-
regularized minimization, are performed using conjugate gradient descent, [22]. In
what follows we look at examples in both one and two dimensions and the results
using these algorithms with different regularization parameters. We also vary the
PA order m, add noise to the initial data, and limit the amount of initial data. We
also compare with an `1 regularized version of Algorithm 5. In all cases we compare
the accuracy and efficiency of each algorithm. Finally, we demonstrate the success
of our new algorithm on synthetic aperture radar (SAR) data, [12].

One-dimensional test case. Figure 7 compares the results of Algorithm 1 and
Algorithm 5 for f1(x) in (20), where the acquired data are 257 noise-free jittered
Fourier samples given by (1). We computed the relative error,

(43) RE = ||f∗ − f ||2/||f ||2,

for each algorithm, resulting in RE = .0446 using Algorithm 1 and RE = .0155
using Algorithm 5. In addition to improving the overall accuracy, it is evident
that due to the precise jump identification yielded using (39), there is improved
resolution and reduced error in the neighborhood of the jump.

Figure 7. (Left) Comparison of Algorithms 1 and 5 on f1(x) using
PA order m = 1 given 257 jittered Fourier samples reconstructed
on 257 grid points; (Right) corresponding pointwise errors. For
parameters, we use ρ = 1, µ = 1, λ = 1, ε = 1.9, `max = 25, and
threshold τ = 1/257.
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Figure 8. Comparison of Algorithms 2 (left) and 6 (right) for
reconstructing f3(x, y) from 257× 257 noise-free Fourier modes on
257× 257 grid points. For parameters, we use PA order m = 2 due
to the piecewise quadratic nature of the function, ρ = .01, ε = .9,
and `max = 5, µ = .1, τ = .025, and λ = 1.

Figure 9. Comparison of errors using Algorithms 2 (left) and 6
(right) for reconstructing f3(x, y), using the same parameters as
Figure 8.

Two-dimensional test case. Similar results are obtained in two dimensions, as
is confirmed in Figures 8 and 9, which compare the results using Algorithms 2 and
6 for f3(x, y) given in (22). The data acquired are 2572 noise-free jittered Fourier
samples given by (4). It is evident that Algorithm 6 yields both better overall
accuracy in terms of relative error, RE = .0414 for Algorithm 6 versus RE = .0616
for Algorithm 2, as well as improved resolution near the edges of the image, exhibited
by the smaller white ring in its error plot.

Robustness of regularization parameter. Choosing the regularization param-
eter for the minimization step of optimization-based reconstruction methods, e.g. as
in (10), is typically difficult and problem-dependent, [28], yet crucial to the success
of the algorithm. Using the edge-adaptive `2 method, we observe a robustness with
respect to the choice of this parameter. This is shown in Figure 10 (right), which
displays the pointwise error plots comparing Algorithm 1 (RWTV) and Algorithm
5 for reconstructing f1(x) in (20) for various values of λ. Observe that our edge-
adaptive `2 method outperforms the RWTV reconstruction for a wide range of λ.
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Such robustness is critical since in many applications reliable ground truth infor-
mation is not available. In terms of relative error, Algorithm 1 yielded RE = .0446,
while even in the worst case, λ = 100, Algorithm 5 produced RE = .0478. More-
over, it is evident that for all choices of λ, there is improved resolution using our
algorithm in neighborhoods of the jump. These results are particularly impressive
when compared with the robustness of Algorithm 1 with respect to the regular-
ization parameter ρ as seen in Figure 10 (left). There we see that the accuracy
varies strongly with ρ, in particular around the jump. Regardless of the choice of
λ, Algorithm 5 outperformed Algorithm 1, especially near the jump.

Figure 10. Pointwise error plot comparisons between Algorithm
1 and Algorithm 5 for f1(x) given 257 jittered Fourier samples
reconstructed on 257 grid points. (Left) Parameters m = 1, `max =
25, ε = 1.9, τ = 1/257, λ = 1, and vary ρ = .01, .1, 1, 10, 100;
(Right) Parameters m = 1, ρ = 1, `max = 25, ε = 1.9, µ = 1,
τ = 1/257, and vary λ = .01, .1, 1, 10, 100.

Comparison of PA order. Recall that the polynomial annihilation (PA) method
annihilates polynomials of degree m − 1 in smooth regions, with m = 1 being
an ideal choice for piecewise constant functions and m = 2 for piecewise linear
functions. When functions and images contain more variation, such as for f2(x)
in (21), choosing m > 1 may yield better results. Figure 11 compares the results
using m = 1, 2, 3 for reconstructing f2(x). In each case, overall improved accuracy
is evident with smaller error around jumps when using Algorithm 5.

One-dimensional examples with noise. Noise in the data acquisition process
of imaging systems has the potential to seriously degrade the quality of a recon-
struction. Figure 12 compares each algorithm for both f1(x) and f2(x) when our
data consists of 257 noisy jittered Fourier samples, (3). Here the noise is assumed
to be zero-mean complex Gaussian. While the edge-adaptive `2 no longer provides
significant improvement in the overall error, it is still evident that the functions are
resolved better in the neighborhoods of the jumps.

Limited data (compressed sensing) example. To test our algorithm’s perfor-
mance when starting from limited data, we consider the Shepp-Logan phantom,
[33], shown in Figure 13. In this experiment, we randomly select just part of the
initial Fourier data to use. Starting from 257×257 jittered Fourier modes as in (4),
Figures 14, 15 and 16 respectively show the results using roughly a fourth, half, and
three fourths of these modes which are chosen uniformly at random. It is evident
that the edge-adaptive algorithm is particularly effective when the edges are close
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Figure 11. Comparison of Algorithms 1 and 5 on f2(x) using
(top) m = 1 (middle) m = 2 and (bottom) m = 3 given 257 jittered
Fourier samples reconstructed on 257 grid points. Left are the
reconstructions, right are the corresponding pointwise errors. For
parameters, we use ρ = 1, `max = 25, ε = 2.9, µ = 1, τ = 1/257,
and λ = 1.

together, that is, it appears in general to have better resolution properties. Fur-
ther theoretical and numerical study is needed to determine precisely the maximum
compression ratio achievable by the edge adaptive `2 method.6

Synthetic aperture radar (SAR) example. As a final example, we consider the
synthetic aperture radar (SAR) phase history data of a vehicle given in [12]. SAR
is an all weather, night or day imaging modality whereby an image is reconstructed
from electromagnetic scattering data. In SAR we assume only a sparse number of
isotropic point scatterers, so the standard `1 regularized reconstruction solves

f∗ = arg min
g

(
||Fg − f̂ ||22 + λ||Θ∗g||1

)
(44)

where Θ∗ is a diagonal phase extraction matrix yielding Θ∗f ≈ |f |. This is needed
because the phase of f is not sparse. (See e.g. [31] for details on the construction of

6We note that typically Shepp Logan phantom reconstructions using compressive sensing algo-

rithms come from either uniform or radial discrete Fourier data, [4, 7], which we are not considering

here.
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Figure 12. (Left) Comparisons of Algorithms 1 and 5 on f1(x)
and f2(x) given 257 noisy jittered Fourier samples. SNR = 15 for
f1(x) and SNR = 20 for f2(x). In both cases we use PA order
m = 1 and reconstruct on 257 grid points; (Right) corresponding
pointwise errors. For f1(x) we use parameters ρ = 1, ε = 1.9,
`max = 25, µ = 1, τ = 1/257, and λ = 1. For f2 we use parameters
ρ = 1, ε = 2.9, `max = 25, µ = 1, τ = 1/257, and λ = 1.

Figure 13. 257× 257 pixel Shepp-Logan phantom.

Θ.) The edge-adaptive `2 method for this application is then

f∗ = arg min
g

(
||Fg − f̂ ||22 + λ||Mg||22

)
(45)

where M = Mx + My is the mask found through Algorithm 4. Since we are now
using `2 regularization, the phase extraction matrix Θ∗ is unnecessary. SAR data
have a significant amount of noise, [14]. Nevertheless we are able to locate the edges
with relatively high confidence. Algorithm 6 is particularly effective in this case
because we can heavily penalize the regularization term, and for our experiments
we chose λ = 100. Figure 17 compares the results reconstructing via equation (44)
and Algorithm 6 for the given SAR data set.
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Figure 14. (Top) Reconstruction on 257× 257 grid points of the
Shepp-Logan phantom using Algorithms 2 (left) and 6 (right) with
PA order m = 1 from 1292 Fourier coefficients randomly chosen
from a grid of 257×257. (Bottom) respective pointwise errors. For
parameters, we use ρ = .01, ε = .9, `max = 5, µ = .01, τ = 0.1,
λ = .1. The relative error using Algorithm 2 was RE = .7160,
while Algorithm 6 yielded RE = .4873.

Efficiency of edge-adaptive `2 minimization. Our new edge-adaptive `2
method is more efficient than Algorithm 2 in all experiments. This is to be expected
since in general `2-regularized problems are much easier to solve than `1-regularized
minimizations. More specifically, the major cost for both Algorithms 2 and 6 is a
conjugate gradient (CG) solve. Algorithm 6 requires only one CG solve, while Al-
gorithm 2 uses the split Bregman method, [21], which requires multiple CG solve
for each reconstruction iteration. Therefore if the convergence tolerance for the CG
step is the same, Algorithm 6 will be more efficient than Algorithm 2 on the order
of the number of CG per iteration times the the number of iterations. The number
of CG solves per iteration can range from O(10) to O(1000), and the number of
iterations can be as many as 10.

Data size Algorithm 2 Algorithm 6
129× 129 4 mins 10 secs 5.6 secs
257× 257 13 mins 2 secs 22 secs
513× 513 49 mins 26 secs 1 min 33 secs

1025× 1025 3 hours 16 mins 6 mins 28 secs
Table 1. Run time comparison between Algorithms 2 and 6 for
reconstructing f3(x, y). We used `max = 5. The run time includes
the time to perform Algorithm 4.

Inverse Problems and Imaging Volume 13, No. 5 (2019), 931–958
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Figure 15. (Top) Reconstruction on 257× 257 grid points of the
Shepp-Logan phantom using Algorithms 2 (left) and 6 (right) with
PA order m = 1 from 1812 Fourier coefficients randomly chosen
from a grid of 257×257. (Bottom) respective pointwise errors. For
parameters, we use ρ = .01, ε = .9, `max = 5, µ = .01, τ = 0.1,
λ = .1. The relative error using Algorithm 2 was RE = .5180,
while Algorithm 6 yielded RE = 0.3259.

Table 1 compares runtimes7 for Algorithm 2 using `max = 5 and Algorithm
6 including the mask generation in Algorithm 4 for f3(x, y). For smaller images,
e.g. those reconstructed on a 129×129 pixel grid given 129×129 Fourier samples, the
runtime for Algorithm 6 is in seconds, compared to minutes for Algorithm 2. Note
that this means that Algorithm 6, including edge detection, is faster than even a
single iteration of Algorithm 2. These gains are even more significant as the images
increase in size. For example, given 1025 × 1025 Fourier samples reconstructed on
1025 × 1025 grid points, our new algorithm computes the results in about 6 and
a half minutes, while Algorithm 2 took over 3 hours, which is over 30 minutes
per iteration. We note that we did not implement accelerated homotopy-based
algorithms for reweighted `1 methods as in [3], which may increase computational
speed. In addition, the iteratively reweighted least squares method developed in [9]
would also run more efficiently, since it also uses an `2 norm in the regularization.
However, we would expect this method to also suffer from the same inaccuracies
that arise from iteratively finding edges.

Edge-adaptive `1 minimization. Finally, we consider Algorithms 5 and 6 but
instead with `1 regularization rather than `2. While efficiency is obviously com-
promised, using `1 may sometimes be appropriate, especially when only a partial
edge map is detected. In this case the rest of the supposed smooth region of the

7All computations were performed on a MacBook Air with a 1.7 GHz Intel Core i5 processor

and 4 GB of memory.
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Figure 16. (Top) Reconstruction on 257× 257 grid points of the
Shepp-Logan phantom using Algorithms 2 (left) and 6 (right) with
PA order m = 1 from 2252 Fourier coefficients randomly chosen
from a grid of 257×257. (Bottom) respective pointwise errors. For
parameters, we use ρ = .01, ε = .9, `max = 5, µ = .01, τ = 0.1,
λ = .1. The relative error using Algorithm 2 was RE = .3458,
while Algorithm 6 yielded RE = .2930.

Figure 17. (Top) Reconstruction comparison of SAR vehicle data
using (left) equation (44) and (right) Algorithm 6. (Bottom) A
close up of the lower right tire.
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image may also have a sparse gradient, and so a sparsity-encouraging `1 norm would
be better suited. A comparison is shown in Figure 18 showing the error plots for
reconstructions of f2(x) from jittered Fourier data with and without added noise.
The relative errors for the noise-free reconstruction error plots are nearly equal
with the `1 method achieving RE = .0641 and the `2 having RE = .0640. When
noise is added, the `2 method slightly outperforms with RE = .0692 compared with
RE = .0706 for `1.

Figure 18. Comparison of edge-adaptive `1 and edge-adaptive `2
methods on f2(x) using 257 Fourier coefficients. (left) error plot
from reconstructions with noise-free data. (right) error plot from
reconstruction with 20 dB zero-mean Gaussian noise added to the
data.

6. Conclusion. The edge-adaptive `2 regularization image reconstruction method
introduced in this paper compares favorably in terms of image quality, sharpness
around jumps, and noise reduction to `1 based iteratively reweighted (HO)TV reg-
ularization reconstructions. It is also more efficient, requiring just a single `1 min-
imization solution for edge detection that only needs to be performed once for an
image. The method is flexible in that edges can be detected using any method, and
if the edges are already known from some other experiment they can directly be
used in our algorithm. After the edge detection, we can rely on faster conjugate
gradient descent methods to solve the easier `2 minimization problem. For some
applications it may be useful to use the edge map produced in Algorithm 4 as a
cross-validation of the image. The results for compressed imaging are promising,
although more work is needed to determine how much compression is possible. Fu-
ture investigations will also include a variable (rather than binary) map, which may
be important when the intensity of the images vary widely in scale. Moreover, this
will allow us to generalize our technique to any problems for which separation of
scales may be advantageous, that is, not just for identifying edges but perhaps also
textures and other singularities. To this end, recent work in [32] on weighted `p
regularization methods might be useful. We also will extend our new algorithm
to multi-measurement vector (MMV) applications, as the efficiency gained by our
method would be even more significant in this case. Finally, we will test our method
on other types of acquired data as well as other sparsifying transform operators,
such as wavelets, which may be advantageous in some applications.
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