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In this paper, we apply two popular image reconstruc-
tion algorithms that use iteratively reweighted regular-
ization to Fourier data acquired non-uniformly. We find
that while both methods reconstruct a test image better
than standard TV regularization using the same num-
ber of measurements, further improvements lie ahead.
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1. INTRODUCTION

Since the development of compressed sensing (CS) [1, 2], total
variation (TV) regularization [3], based on the `1 norm has been
ubiquitous in image reconstruction. The general method is to
reconstruct an image as the solution to the optimization problem

arg min
f
||Af− f̂||22 + λ||Df||1 (1)

where A is the forward model for the imaging system, f̂ is the
collected data, λ is a regularization parameter weighting fidelity
against regularization, and D is the matrix representation of the
TV transform. The accuracy of (1) relies on two things. The
first is an appropriate choice for λ, which is typically difficult
and problem-dependent, [4]. The second is sparsity in the edge
domain of the image. That is, the number of jumps in the image
needs to be much lower than the total number of points.

In ideal cases, (1) has been shown to reconstruct images ex-
actly using a sampling rate significantly below that prescribed
by the Shannon-Nyquist sampling theorem, [1]. In many cases,
however, the resulting reconstruction is not actually as sparse
in the edge domain as desired. This could be due to noise, non-
uniform sampling, the fact that the TV transform is not actually
sparsifying with respect to a particular image, or that the `1
norm penalizes large magnitudes more heavily. When dealing
with data from a real-world imaging system, there is likely a
combination of these factors. As a result, the overall accuracy of
the reconstruction is diminished.

One promising approach for correcting this issue is to use
iteratively reweighted (IR) regularization, [5–11]. IR methods
employ multiple runs of TV regularization based on a weighted

`p norm, where typically p ∈ {1, 2}. The main idea in this
class of algorithms is to remove the magnitude dependence
by penalizing non-zero magnitudes in the edge domain more
fairly than is done by an unweighted `1 norm. These methods
typically prescribe weights that are inversely proportional to the
magnitude of each point in the edge domain. In this way, they
end up regularizing less in areas with jumps and more in areas
without jumps.

These IR methods have been shown to increase the accuracy
of a reconstruction when data are acquired as uniform Fourier
samples, [5]. That is, as in (1) the forward model is A = F, the
discrete Fourier transform (DFT). In this paper we perform the
straightforward extension of these algorithms to non-uniformly
acquired Fourier data. This will require the implementation of a
non-uniform discrete Fourier transform forward model, or more
practically a non-unifrom fast Fourier transform (NFFT), [12–14].
This is an important addition, as data are frequently acquired
non-uniformly in real-world imaging systems and non-uniform
sampling creates additional reconstruction errors.

This paper will focus on applying the two most popular (by
citation count) IR methods, those of [5] and [6], to non-uniform
Fourier data image reconstruction. Comparisons of these two
methods were also included in [6] and [10], but only for Gaussian
forward models and one-dimensional sparse signals.

2. PROBLEM SET UP

Let f : [−1, 1]2 → R be a piecewise smooth function. We can
think of this as the underlying function that describes the image
we want to reconstruct. Suppose we are given finitely many
non-uniform Fourier samples of f ,

f̂ (λk) =
1
4

∫ 1

−1

∫ 1

−1
f (x, y)e−πiλk,1xe−πiλk,2ydxdy (2)

where λk = {(λk1
, λk2 ) : |k1|, |k2| ≤ M} ∈ R2. Specifically, we

look at the jittered sampling pattern for λk given by

λk = k−
⌊

2M + 1
2

⌋
− 1 +

1− 2ξk
4

(3)

where ξk ∼ U([0, 1])2. Figure 1 gives a visualization of (3).
This sampling pattern simulates data theoretically acquired on
a uniform grid with some error that sometimes occurs in real
world measurement systems. Reconstructing using a standard
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Fig. 1. Jittered non-uniform sampling pattern as in (3).

DFT as the forward model will not take into consideration these
perturbations.

Let f = { f (xj, yj) : j = 1, . . . , N2} be a vector of the recon-
struction points and f̂ = { f̂ (λk1

, λk2 ) : |k1|, |k2| ≤ M} be a
vector of the Fourier modes. The standard TV reconstruction is
the solution to the unconstrained optimization problem

arg min
f
||FNf− f̂||22 + λ||Df||1, (4)

where FN is the NDFT matrix. The top right box of Figure 2
shows an example of (4) implemented on the Modified Shepp-
Logan phantom. Iteratively reweighted regularization methods
seek to improve upon this result.

3. ITERATIVELY REWEIGHTED SCHEMES

As explained in [1], reconstructing an image via solving

arg min
f
||FNf− f̂||22 + λ||Df||0, (5)

where || · ||0 counts non-zero values, promotes the most sparsity
in the edge domain of the image. However, this combinatorial
problem is NP-hard. The `1 norm as in (4) acts as a convex
surrogate for the `0 term, making the problem easier to solve.
But, it is not as sparsity-encouraging. Naturally, this begs the
question of whether there are better surrogates that generate
solvable optimization problems. We will look at two different
approaches that both use IR schemes to approximate nonconvex
functions that are closer surrogates to the `0 term.

Both methods employ multiple runs of TV regularization
based on a weighted `1 or `2 norm. The main idea behind these
methods is that large weights can be used to discourage non-zero
entries in the edge domain, while small weights can be used to
encourage non-zero entries. Hence they penalize non-zero edge
domain magnitudes more fairly than the magnitude-dependent
`1 regularization. To achieve this, weights inversely proportional
to the true edge domain magnitudes are used. In this way, IR
methods encourage sparsity in the edge domain by regularizing
less in areas with jumps and more in areas without jumps.

A. Iteratively reweighted `1 (IR`1)
In lieu of the `0 or `1 regularization terms, the approach of [5]
is to regularize using the log-sum function, a concave penalty
function that more closely resembles the `0 norm. The log-sum
penalty function has the potential to be much more sparsity-
encouraging than the `1 norm, and is a closer surrogate to the `0
norm. See Figure 3 in [5] for a heuristic explanation of this. They
want to solve

arg min
f
||FNf− f̂||22 + ∑

1≤i,j≤n
log(|(Df)i,j|+ ε) (6)

where ε is a parameter to stay in the domain of log. However,
since the log-sum function is nonconvex, (6) is difficult mini-
mize. So the authors propose to approximate it with a series
of weighted `1 regularized minimizations. Details for their IR
algorithm are in Algorithm 1.

A similar algorithm from [8] uses the same framework with
support estimates and constant weights. Another support-
driven `1-based approach is in [9]. Zhao and Li in [? ] provide a
unified framework for reweighted `1 minimization.

Algorithm 1. IR`1

1: Set ` = 0 and w(`)
i,j = 1 for 1 ≤ i, j ≤ N, where N is the

number of grid points in each dimension.
2: Solve the weighted regularization minimization problem

f(`) = arg min
f
||FNf− f̂||22 + λ ∑

1≤i,j≤2J
w(`)

i,j |(Df)i,j|.

3: Update the weights. For each (i, j), 1 ≤ i, j ≤ N,

w(`+1)
i,j =

1
|(Df(`))i,j|+ ε

To avoid division by zero and normalize the weights, ε > 0
is a small constant. The authors claim the algorithm is fairly
robust to the choice of ε.

4: Terminate on convergence or when ` attains a specified max-
imum number of iterations `max. Otherwise, increment `
and go to step 2.

B. Iteratively reweighted least squares (IRLS)
The method from [6] ends up using a similar surrogate for the `9
term to the one above, but takes a different approach to finding
it. The authors attempt to use iteratively reweighted `2 regu-
larization, or iteratively reweighted least squares, to solve the
nonconvex problem

f∗ = arg min
f
||FNf− f̂||22 + λ||Df||pp (7)

for p ∈ [0, 1). The best results occur using p = 0, which uncoin-
cidentally, similar to Algorithm 1, corresponds to regularizing
with the concave log-sum penalty function with a squared argu-
ment

∑
1≤i,j≤N

log((Df)2
i,j + ε). (8)

Algorithm 2 details the procedure. A basic comparison in [6]
shows that Algorithm 2 slightly outperforms Algorithm 1 in
recovering a sparse signal from random measurements when
an appropriate adaptive choice of ε is applied. In addition to
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accuracy, another benefit of the `2 approach is computational
simplicity. Each iteration of Algorithm 1 requires solving an `1
minimization problem. This quickly becomes computationally
expensive. As for IRLS, even in the case that the inversion in
step 2 is expensive, this inner problem can be solved using a
conjugate gradient method, which is much more efficient than
methods used to solve `1 regularized problems.

Further work has been done on convergence of iteratively
reweighted least squares methods in [7].

Algorithm 2. IRLS

1: Set ` = 0 and w(`)
i,j = 1 for 1 ≤ i, j ≤ N, where N is the

number of grid points in each dimension.
2: Solve the weighted regularization minimization problem

f(`) =
(

FT
N FN + λ(W(`)D)TW(`)D

)−1
FT

N f̂

where W(`) = diag(w(`)).
3: Update the weights. For each (i, j), 1 ≤ i, j ≤ N,

w(`+1)
i,j =

1
(Df(`))2

i,j + ε

where ε is a parameter similar to that in Algorithm 1.
4: Terminate on convergence or when ` attains a specified max-

imum number of iterations `max. Otherwise, increment `
and go to step 2.

4. NUMERICAL RESULTS

Our test image is the Modified Shepp-Logan phantom of size
256× 256 pixels. See top left box of Figure 2. In the frequency do-
main, we acquire a 50× 50 grid of jittered (non-uniform) Fourier
samples. This is few enough so that the standard TV reconstruc-
tion is flawed, which allows us to test the improvement of each
method.

For the implementation, for Algorithm 1 we perform each
`1 minimization using the Split Bregman method [15]. For Al-
gorithm 2, each `2 minimization is performed using conjugate
gradient descent [16]. See code for more. In terms of speed, IRLS
objectively runs faster than IR`1. This is completely expected
since in general `2 regularized minimizations are much easier
to solve then `1 regularized minimizations. However, we did
not consider accelerated algorithms that have been proposed for
IR`1, [17].

For the regularization parameter, since we did not consider
additive noise, we use a low weight λ = 10−5 for all algorithms.
For the choice of the parameter ε, [5] recommends that a choice
of ε slightly smaller than the expected nonzero magnitudes of
Df provides the stability necessary to correct for inaccurate coef-
ficient estimates while still improving upon the unweighted TV
algorithm. On the other hand, [6] gives evidence that changing ε
in each iteration yields superior results for the problem of sparse
signal recovery. However, the implementation suggested does
not make sense for a use-case with much higher error. Therefore,
we did not consider an adaptive ε parameter, only fixed. In
particular, some basic testing gave the best results for ε = 10−1

for IR`1 and ε = 10−4 for IRLS.
For the main result, Figure 2 shows the reconstructions. In

the eyeball norm we see that both IR`1 and IRLS improve upon

Fig. 2. Reconstruction comparison of 256× 256 pixel Modified
Shepp-Logan phantom from 50× 50 jittered Fourier modes. Top
left is the original while the others are reconstructions via (top
right) TV regularization, (bottom left) IR`1, and (bottom right)
IRLS.

the standard TV reconstruction. However, in both cases we still
see some spurious oscillations as well as the over-smoothing of
edges. It follows that we see minimal gains in relative error. The
relative error for the TV minimization was ||f∗ − f||2/||f||2 =
0.3994. For IR`1, the relative error was 0.3629, and for IRLS,
0.3705.

5. CONCLUSION AND FUTURE WORK

This paper provides some evidence that IR methods are superior
to single-run methods when reconstructing images with sparse
edges from non-uniform Fourier data. Both IR`1 and IRLS can
recover an image better than standard TV reconstruction using
the same number of measurements. However, further testing is
needed when complex Gaussian noise is added to the data as
well as when different sampling patterns are used.

There are also some drawbacks to IR methods. Run time is
increased for these methods, since they require multiple TV min-
imization steps. In addition, they introduce another uncertainty

Fig. 3. Comparison of x-direction IR`1 (left) and IRLS (right)
weighting matrices after 5 iterations. Black indicates minimum
weight while white indicates maximum weight.
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in the parameter ε, upon which the success of these algorithms
depends. Lastly and chiefly, the accuracy of these methods is not
terribly better than standard TV reconstruction. It seems that
one source of error is from the difficulty both of these methods
have with weighting points between 0 and 1

ε . Since there is
no smooth variation away from jumps in our test image, many
of these values falsely indicate small jumps. Troublingly, Fig-
ure 3 shows both methods generate many of these false jump
identifications, leading to overall less accurate reconstructions.

Future work focused on a better way to assign weights the
regularization term has promise to increase the accuracy and
speed of these methods. In particular, the authors of [5] claim
that without prior information about non-zero elements in the
edge domain of an image, the procedure for selecting these
weights is iterative in nature. However, the weighting schemes
adopted by these methods are likely not most direct way to pe-
nalize non-zero locations in the edge domain when the problem
starts from Fourier data. In particular, there are robust methods
available for edge detection from Fourier data [18]. Performing
a pre-processing edge detection and applying a zero weight to a
point where an edge is detected and a high constant weight to
points where no edge is detected may yield better accuracy and
could also improve run time since it would only require a single
optimization step. Further study is certainly in this direction is
required.
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