
Fast multipole methods for axisymmetric geometries

Victor Churchill
New York University

May 13, 2016

Abstract

Fast multipole methods (FMMs) are one of the main numerical methods used in
the solution of integral equations arising from the boundary-value PDEs of classical
mathematical physics. When the boundary to be discretized possesses rotational sym-
metry, however, Fast Fourier Transforms can be used to decompose the surface integral
equation into a series of integral equations along curves. The kernels of these integral
equations are the Fourier modes of the original three-dimensional Green’s function.

In this work, we extend the idea of interpolation-based fast multipole methods to
kernels which are not translation invariant, in particular, modal Green’s functions.
Building on the previous work of Fong and Darve, 2009, we show that Black Box
FMMs can be constructed for modal Green’s functions which can take advantage of
efficient BLAS3 linear algebra routines, effectively vectorizing the calculation across all
rotational modes.

1 Introduction

This project examines the problem of constructing of a fast multipole method (FMM) algo-
rithm for density distributions on axisymmetric surfaces of revolution. Using the symme-
try of the surface, Fourier methods can be used to represent free-space three-dimensional
Green’s functions in terms of their angular Fourier modes. These kernels are known as
modal Green’s functions. We will refer to the resulting numerical scheme as the modal
FMM (mFMM).

We will work in three-dimensional cylindrical coordinates (r, θ, z) such that a point in
Cartesian coordinates (x, y, z) is represented by:

x = r cos θ

y = r sin θ

z = z

1

An axisymmetric, or rotationally symmetric, surface Γ is obtained by rotating a two-
dimensional curve γ about the z axis. The curve γ is called the generating curve, as in
Figure 1. In particular, Γ = γ×T where T is the one-dimensional torus (circle) parametrized
by θ ∈ (−π, π].

Figure 1: An axisymmetric bowl-shaped surface Γ and its generating curve γ.

Integral equations are equations using integral operators defines on curves or surfaces.
For example, consider the integral equation

f(x) =

∫
Γ
K(x,y)σ(y)dy x,y ∈ Γ (1)

where f is a potential, K is the kernel, and σ is a continuous density distribution. Boundary
integral equations of this form can be solved for f by using a discretization scheme.

f(x) =
N∑
j=1

K(x,yj)σj x,yj ∈ Γ (2)

The discretization from the integral equation to a discrete sum over a finite number of
points requires a numerical quadrature rule for approximating the integral which specifies
the location and spacing of, as well as the weights at, the discretization points, as well as
interpolation functions (polynomials).

Integral equations over surfaces and curves with corners or geometric singularities are
more difficult to discretize than smooth curves and surfaces. For example, a circular
generating curve like in Figure 2 is easy to discretize with a relatively low number of
equally-spaced points (simple numerical quadrature). For a rectangular generating curve
like in Figure 3, however, we need more discretization points in the corners due to this
source density clumping. Similarly, for a bowl-shaped surface as in Figure 1, we would
need a lot of discretization points near the vertex of the generating curve. The need for a
modal FMM arises from this difficulty of discretizing axisymmetric boundary-value integral

2

Figure 2: An axisymmetric torus Γ and its circular generating curve γ.

Figure 3: An axisymmetric pipe surface Γ and its rectangular generating curve γ.

equations with corners or geometric singularities such that source densities clump together
and require a large number of discretization points to be well-represented.

Integral equations on axisymmetric surfaces have many applications. The problem of
electromagnetic scattering by a surface of revolution, for example, has radar, geophysical
exploration, and acoustics applications. Fast direct solvers, like the one proposed in [6],
rely on FMM-type rank observations for axisymmetric density distributions to help solve
problems arising in these fields.

The remaining organization of this paper is as follows: §2 states the problem in de-
tail. §3 gives the motivation for using and the derivation of the Fourier representation
of a Green’s function. §4 gives an overview of fast multipole methods and discusses why
some existing techniques are not optimal for geometrically-challenging axisymmetric dis-
tributions. §5 details the black-box Chebyshev interpolation-based FMM as a basis for
the modal FMM. Lastly, §6 describes future work to construct, implement and test a full
modal FMM algorithm.

3

2 Statement of problem

Motivate using layer potential instead of N-body problem, otherwise points need to be
equidistantly spaced in θ.

Consider the integral equation

f(xi) =

∫
Γ
K(xi,y)σ(y)dy xi,y ∈ Γ (3)

where K is a layer potential kernel, and σ is a given continuous density or charge
distribution. We want to compute the potential f at targets xi due to sources y.

Consider N source points yj = (r′j , θ
′
j , z
′
j) distributed on an axisymmetric surface Γ,

with each assigned a charge σj . In practice, the same set of points act as both sources and
targets. The potential is represented by the sum

f(xi) =
N∑
j=1

K(xi,yj)σj (4)

where K(x,y) is a kernel, typically the Green’s function of the partial differential equation
that describes the potential between two points in the domain. In particular, we are inter-
ested in the free-space (no boundary conditions) Green’s function for Laplace’s equation,
∆u = 0:

K(x,y) =
1

4π|x− y|
(5)

The goal is to construct a fast summation method for this integral equation that takes
advantage of the rotational symmetry of Γ using a discretization scheme and numerical
quadrature rule that accounts for geometric structures with corners or geometric singular-
ities.

3 Modal Green’s Function

The crucial technique to construct a fast method for an axisymmetric density distribution
is to reduce the problem in three dimensions to a series of problems in two dimensions
using Fourier analysis. In §3.1, we show the derivation of this Fourier representation for
an arbitrary kernel, then for the Green’s function of Laplace’s equation. This strategy is
grounded in the fact that it is easier to solve boundary integral equations defined on curves
in R2 than those defined on surfaces in R3.

We are able to reduce the problem in this way because the rotationally symmetric
nature of Γ yields K(x,y) symmetric along the θ-axis such that the kernel is a function of
the difference θ − θ′:

K(x,y) = K(θ − θ′, r, z, r′, z′)

4

We call such a kernel rotationally invariant.
Now recall that if for two any points x and y in the computational domain a kernel

can be written

K(x,y) = K(|x− y|)

then it is called translation invariant. Every translation invariant kernel is also rotationally
invariant. Notice that the Green’s function for Laplace’s equation is translation invariant.
Not all kernels are translation invariant, however, and the fact that what we’ll define in
§3.1 as the modal Green’s function is not translation invariant is crucial to the difficulty
of creating a modal FMM.

3.1 Fourier representation of 3D integral equations

This derivation closely follows [11]. Consider the Fredholm integral equation of the first
kind defined on Γ:

f(x) =

∫
Γ
K(x,y)σ(y)dy x,y ∈ Γ (6)

This is a 3D integral equation, which we can view as a continuous version of equation (1).
We can represent (3) as a sequence of 2D integral equations defined on the generating

curve γ by performing Fourier transformations on f , σ, and K. If fm, σm, and km are the
Fourier modes of f , σ, and K, respectively, then we have

fm(r, z) =

∫
T

e−imθ√
2π

f(r, z, θ)dθ f(x) =
∑
m∈Z

eimθ√
2π
fm(r, z)

σm(r, z) =

∫
T

e−imθ√
2π

σ(r, z, θ)dθ σ(x) =
∑
m∈Z

eimθ√
2π
σm(r, z)

km(r, z, r′, z′) =

∫
T

e−imθ√
2π

K(r, z, r′, z′, θ)dθ K(x,y) =
∑
m∈Z

eim(θ−θ′)
√

2π
km(r, z, r′, z′)

such that

√
2π

∫
γ
km(r, z, r′, z′)σm(r′, z′)r′dl(r′, z′) = fm(r, z) (r, z), (r′, z′) ∈ γ (7)

for each m ∈ Z.
In practice, we choose a truncation parameter, M ∈ N, such that f is well-represented

by its lowest 2M + 1 Fourier modes

||f −
M∑

m=−M

eimθ√
2π
fm|| ≤ ε (8)

5

and only utilize the lowest 2M + 1 Fourier modes for each of the functions f , σ, and K.
We are using the Green’s function of a PDE as our kernel, so km is called the modal

Green’s function. We should note that for now we are only considering the Green’s function
for Laplace’s equation because its Fourier modes can be solved for analytically. For many
other kernels, it is not possible to find the same type of explicit formula, and we would need
to approximate the modes using a discretization as in [11]. So for the Green’s function for
Laplace’s equation we have

1

4π|x− y|
=

1

4π
√
r2 + r′2 − 2rr′ cos (θ − θ′) + (z − z′)2

(9)

=
∑
m∈Z

eim(θ−θ′)
√

2π
sm(r, z, r′, z′) (10)

where the modal Green’s function is

sm(r, z, r′, z′) =
1√

8π3rr′
Qm− 1

2

(
r2 + (r′)2 + (z − z′)2

2rr′

)
(11)

with Qm− 1
2

the half-integer order Legendre function of the second kind. Notice that while

K was translation invariant, sm is not. This has implications which we discuss later.
Now rather than constructing a fast summation for a density distribution on Γ using

K(x,y), we can construct a series of fast summations for a density distribution on γ using
sm(r, z, r′, z′).

In the next section, we give an overview of the FMM, and discuss how several well-
known fast methods approach the problem of axisymmetric density distributions.

4 Fast multipole methods

Fast multipole methods are a class of algorithms that were developed to compute N -body
sums in O(N) time. FMMs are widely used in combination with iterative solvers to find
the solutions of integral equations. Equation (1) shows the naive computation of such a
potential. We can view this as a matrix-vector multiplication. In general, FMMs reduce
the computational complexity of this matrix-vector multiplication from O(N2) to O(N) or
O(N logN) for a given error level ε. FMMs are fast approximation algorithms, with higher
accuracy costing higher computational complexity. There are two fundamental categories
of FMMs that differ in the way that they efficiently represent source densities: analysis-
based algorithms that use analytic multipole and local expansions, and kernel-independent
methods that use equivalent densities or weights.

In the analysis-based FMM, the potential induced by source densities at a far away
target is represented using a multipole expansion, while the potential induced by the far
away sources is encoded in a local expansion. In kernel-independent methods, the potential

6

induced by source densities at a far away target is represented using an upward equivalent
density, while the potential induced by far away sources is encoded using a downward
equivalent density. Each of these interactions is low-rank, and can be approximated using
low-degree interpolation or special function expansions. The basic idea is that for well-
separated points, the naively-computed potential between sources and targets is the same
as the potential due to the efficient density representation. The target points can’t tell the
difference between the actual source densities and the density representation, so we can take
advantage of the fact that it’s less computationally expensive to use these representations.

4.1 Hierarchical tree structure

Before we discuss these two types of FMMs further, we need to define the tree structure of
the computational domain which allows us to specify what we mean by ”far away” as we
said above, and perform multilevel FMMs to further accelerate the summation in equation
(1). In 2D, the computational domain is a box containing all source and target points.
This box is hierarchically partitioned into a quadtree. The box containing all sources and
targets is called level 0 or the root level, with the next level of partitioning called level 1,
and so on. The computational domain is partitioned until there are at most a pre-specified
number of points in each box. Figure 4 shows the partitioning process.

We will use some terminology when discussing the tree, which we must define. A box’s
parent is the box one level up that contains it. Similarly a box’s children are the boxes
one level down that it contains. For example in Figure 4, the only box on level 0 is the
parent of all boxes on level 1. The near-neighbors of a box are the boxes on the same level
with which it shares an edge or corner. In 2D, a box has at most 8 near-neighbors. If
two boxes are not near-neighbors they are called well-separated. A box’s far-field is made
up of all non-near-neighbor boxes. Lastly, each box has an interaction list, which is made
up of boxes on the same level that are children of the parent’s near-neighbors but are not
near-neighbors. Figure 5 shows the interaction list of a box. Each box in 2D has at-most
27, 62 − 32, boxes in its interaction list.

4.2 Analysis-based FMMs

The classical analysis-based FMM first developed by Greengard and Rokhlin in [5] relies on
analytic expansions for the potential. As mentioned above, they used a multipole expansion
such that sources clumped together could be viewed as a single source to a target in the
far-field, and a local expansion to represent the potential at a target due to all sources in
the far-field.

We now look at an example of these expansions. Consider the 2D single-layer Laplacian
kernel K(x,y) = − 1

2π log(|x− y|). It is convenient to write this as K(x,y) = Re(log(zx −
zy)), where zx and zy are complex number corresponding to points x and y in the plane.
Now suppose the source densities are supported in a disk centered at zC with radius r.

7

Figure 4: The hierarchical partitioning of the computational domain, levels 0 through 3,
with sources and targets in blue.

Then for all z outside the disk with radius R, (R > r), we can represent the potential at z
from the source densities using a set of coefficients {ak; 0 ≤ k ≤ p}, where

f(z) = a0 log(z − zC) +

p∑
k=1

ak
(z − zC)k

+O
(
rp

Rp

)
(12)

This is the multipole expansion. On the other hand, if the source densities are outside
the disk with radius R, the potential at a point z inside the disk with radius r can be
represented using a set of coefficients {ck, 0 ≤ k ≤ p}, where

f(z) =

p∑
k=0

ck(z − zC)k +O
(
rp

Rp

)
(13)

This is the local expansion. In both expansions, p is usually a small constant determined
by the desired accuracy of the result. For 3D applications, rather than Laurent series’, the
far field is represented by expansions using spherical harmonics and Legendre polynomials.

8

Figure 5: The blue boxes make up the interaction list of the red box.

For our problem of a modal FMM for axisymmetric density distributions, however,
an analysis-based FMM for the series of modal Green’s functions is not possible because
the necessary analytic machinery (multipole and local expansions) for the modal Green’s
function, sn, has not been found yet, if it exists at all. Even if it does exist, it is most
likely inefficient to construct.

4.3 Kernel-independent methods

Since we don’t have the analytic machinery required for an analysis-based FMM, we fo-
cus on kernel-independent methods to construct a modal FMM. One advantage of these
methods is that they are relatively easy to implement, since in general they apply to an
arbitrary kernel. To change the kernel in the classical FMM, we would need to develop an-
alytic multipole and local expansions, which as aforementioned are difficult to find if they
exist at all. These methods can be separated into two categories. The first requires that
the kernel is the Green’s function for some elliptic partial differential equation, satisfying
Green’s third identity. The most well-known method of this type is the kernel-independent
FMM (KIFMM), which was constructed by Ying, Biros, and Zorin in [10]. Second are
methods which work with any smooth kernel. The most well-known method of this type
is the black-box FMM (bbFMM) by Fong and Darve in [3].

Kernel-independent methods use equivalent densities to represent the source densities
rather than analytic expansions. As an example, in the KIFMM, an upward equivalent
density for a box is a continuous distribution surrounding the box that matches the po-
tential due to the box’s source densities at a target in the far-field. This is analogous to a
multipole expansion. We find this density by solving the following equation for σB,u∫

yB,u

K(x,y)σB,u(y)dy =

N∑
j=1

K(x,yj)σj for all x ∈ xB,u (14)

9

where yB,u is the equivalent surface and xB,u is the upward check surface, shown in Figure
6. To solve, we discretize the equation using points on the equivalent and check surfaces,
also shown in Figure 6. This discretization requires two steps. First, the right hand side
is the evaluation of a check potential. This step checks that the potential represented
by the equivalent density and the actual source densities are the same to all boxes in
the far field. Then on the left hand side, we invert a Dirichlet-type boundary integral
equation to obtain the equivalent density. This corresponds to the application of a matrix
of kernel evaluations. Similarly, the downward equivalent density for a box is a continuous
distribution surrounding the box that matches the potential at a target in the box due
to all source densities in the far field. To get this, again we solve a boundary integral
equation using a discretization scheme. This is analogous to the local expansion in the
analysis-based FMM. Using these densities, the KIFMM only requires kernel evaluations.

Figure 6: The red circle is the upward equivalent surface with dark red discretization
points. The blue circle is the upward check surface with light blue discretization points.

Before we address the application of the KIFMM to an axisymmetric density distribu-
tion, we discuss translation operators and the general structure of the FMMs. These two
elements need to be covered to understand the inefficiencies of the KIFMM as a basis for
the modal FMM in this scenario.

4.4 Translation operators

FMMs employ these multipole and local expansions or upward and downward equivalent
densities recursively in a multilevel scheme. Translations between these efficient represen-

10

tations are what make these O(N) algorithms possible.
In the analysis-based FMM, a translation operator translates a multipole or local ex-

pansion of one box to that of another in the computational domain using expansions of
functions. In kernel-independent methods, translation operators translate equivalent den-
sities in the same way but with linear operators or matrices. To describe each operator
below, we use the terminology for the analysis-based FMM (multipole and local expan-
sions), but we could analogously substitute upward and downward equivalent densities. In
particular, five translations are used:

• S2M : The source to multipole operator creates a multipole expansion for a box.

• M2M : The multipole to multipole operator translates the multipole expansion of a
box to that of its parent.

• M2L: The multipole to local operator translates the multipole expansion of a box to
the local expansion of a box in its interaction list.

• L2L: The local to local operator translates the local expansion of a box to the local
expansion of a child box.

• L2T : The local to target operator computes the far-field interaction contribution by
evaluating the local expansion of a box at the target points in that box.

It’s important to note that the sum of the contributions from the M2L operation and
L2L operation make up the local expansion, or downward equivalent density, for a box.

These translation operators are the backbone of a fast multipole algorithm because they
reduce the number of direct computations required to do the summation in equation (1).
The M2M , M2L, and L2L translation operators can be computed without any knowledge
of the source or target points, so they are a true pre-computation. The only requirement
is a partitioned computational domain.

An important consideration in evaluating a fast method is the cost of pre-computing
these operators. For translation invariant kernels, the translation operators will only differ
based on relative position and level in the hierarchical tree. This is due to the fact that the
kernel only depends on the difference between coordinate values, (|x − y|). For example,
using Figure 7, with a translation invariant kernel the M2L operator used to translate from
the green box to the orange box would be the same one used to translate from the blue
box to the red box. So in the case of translation invariant kernels, many M2L translation
operators on a given level are identical, and need not be computed repeatedly. In fact,
each level has at most 40 (72 − 32) unique transfer vectors in this case.

On the other hand, for kernels that are not translation invariant in any variable, every
translation operator for every box in the computational domain needs to be computed.
Every transfer vector is unique, so none of them can be reused or recycled as above. Notice
that the modal Green’s function is invariant in z, but not r, so we need to take this more

11

Figure 7: We use this figure to describe relationships between translation operators.

costly pre-computation into consideration. In particular, this is a negative aspect of using
the KIFMM for axisymmetric densities, which we discuss in §4.6.

4.5 General multilevel algorithm

Now that we’ve defined the tree structure and translation operators, we can give the general
algorithmic structure for FMMs. All of these methods, whether analysis-based or kernel-
independent, use the same general steps to accelerate the summation in equation (1). This
is shown in [3], [5], [10], and many other FMM papers. Here we’ll continue to work in 2D,
and use terminology from kernel-independent methods (upward and downward equivalent
densities), although we could analogously substitute the analysis-based FMM language.

1. Hierarchically partition the computational domain using a quadtree of boxes with
L + 1 levels 0, . . . , L, until each box on the finest level L contains no more than p
source points. The parameter p is chosen based on a desired accuracy level ε.

2. For each box on the finest level L, construct an upward equivalent density using the
S2M operator.

3. For each box on levels 1, . . . , L, shift the upward equivalent density of the box to the
upward equivalent density of the parent box using the M2M operator. Steps 3 and 4
are referred to as the upward pass, and together they accumulate upward equivalent
densities for every box in the computational domain.

4. For each box on levels 2, . . . , L, compute the contribution to the box’s downward
equivalent density by translating the upward equivalent densities of boxes in its in-
teraction list using the M2L operator.

5. For each box on levels 0, . . . , L− 1, translate the downward equivalent density of the
box to the downward equivalent densities of its child boxes using the L2L operator.

12

Steps 4 and 5 are referred to as the downward pass, and the summation of these oper-
ations accumulates a downward equivalent density for every box in the computational
domain.

6. Compute the total far-field contribution for each box by using the L2T operator to
evaluate its downward equivalent density at the target points in the box.

7. Lastly, for each box, directly compute the contribution from near-field interactions
from sources in near-neighbor boxes and add them to the far-field contribution. This
sum is the total potential at targets in the box.

4.6 Problems with a modal KIFMM

As explained in §4.3, rather than using analytic multipole and local expansions, the KIFMM
substitutes a continuous distribution of upward and downward equivalent densities that
lie on surfaces surrounding each box in the hierarchical tree to represent the potential
generated by sources in that box and the potential in that box due to sources in the
far-field.

To implement the KIFMM for axisymmetric density distributions, the technique of
using the modal Green’s functions described at length by Young, Yao, and Martinsson in
[11] can be used; replace the 3D integral equations required by the 3D KIFMM with their
Fourier representations, sequences of 2D integral equations. This way we can avoid the 3D
KIFMM in favor of repeatedly applying the 2D KIFMM.

There are, however, a few negative attributes of using the KIFMM as the basis for a
modal FMM. The first is that the pre-computation of translation operators will be expen-
sive due to the fact that the modal Green’s function is not a translation invariant kernel.
As aforementioned, for non-translation invariant kernels, we need to pre-compute all trans-
lation operators for every box in the computational domain. In an attempt to reduce this
pre-computation, we tried to find constant proportionality between the operators. For
example, using Figure 7 we considered that perhaps the M2L operator used to translate
from the blue box to the purple box is in proportion to the M2L operator used to translate
from the blue box to the yellow box. However, these attempts failed and indeed since the
translation operators in the KIFMM are simply kernel evaluations, we wouldn’t expect to
find this proportionality in them because it doesn’t exist in the kernel. So every translation
operator for every box on every level would need to be pre-computed.

Further adding to the pre-computation is the fact that these operators need to be
computed for all 2M + 1 modes, where M is the truncation parameter for the Fourier
expansion. As we saw in §4.5, the translation operators in the KIFMM in their discretized
form are matrices of kernel evaluations that translate an equivalent density from one box to
that of another. Since we’re essentially using 2M+1 different kernels in this scenario, then
the algorithm will require the pre-computation of 2M + 1 times the number of operators
required for the computational domain. The consequences of translation operators made

13

up of kernel evaluations is not limited to the pre-computation. The result is essentially
that the entire FMM algorithm described in §4.5 would need to be done separately 2M + 1
times, once for each mode of the kernel. This is in sharp contrast to the computational
savings of the vectorization of this process that’s possible in the black-box FMM, which
we discuss next.

5 The black-box FMM

The black-box FMM is a kernel-independent, Chebyshev interpolation-based O(N) algo-
rithm for non-oscillatory kernels. Over the course of this section, we will show that the
bbFMM will serve as a strong basis for developing a modal FMM. In particular, we consider
this scheme to quickly compute this sum for each modal Green’s function

fm(xi) =

N∑
j=1

sm(xi,yj)σm,j (15)

for targets xi and sources yj .
The full fast summation algorithm combines the methods of SVD compression from [4]

and [8], which gives the kernel approximation

sm(x,y) =
∑
i

αiui(x)vi(y) (16)

and Chebyshev interpolation, which gives the kernel approximation

sm(x,y) =
∑
i

∑
j

sm(xi,yj)wi(x)wj(y) (17)

The advantages of this method for axisymmetric density distributions with difficult ge-
ometries are many. In general, this algorithm uses weights in each box placed at Chebyshev
nodes as equivalent densities. As a consequence of discretizing an integral equation of the
type in equation (1), we need a numerical quadrature rule that has more discretization
points in corners or near geometric singularities. Chebyshev nodes clump in corners such
that source densities located there will be well-represented. The location of these weights
is shown in Figure 8. The bbFMM is also good for analytically complicated kernels like
the modal Green’s function, sm, but which can be evaluated efficiently as shown in [7] and
[11]. Unlike the FMM or KIFMM, the bbFMM just requires a smooth kernel, and only
uses kernel evaluations at Chebyshev nodes.

To take a step back and find these Chebyshev nodes, we need to define the nth Cheby-
shev polynomial

Tn(x) = cos

(
n arccos

(
2

b− a

(
x− a+ b

2

)))

14

Figure 8: The bbFMM uses equivalent densities in the form of weights at the Chebyshev
nodes in each box to represent the source densities. This is shown for n2 = 100 Chebyshev
nodes in red representing the source densities in blue.

on an interval [a, b]. In one dimension, the Chebyshev nodes are the n roots of the Cheby-
shev polynomial on [a, b]

xi =
a+ b

2
+
b− a

2
cos

(
2i− 1

2n
π

)
for i = 1, . . . , n.

For two dimensions, there are n2 Chebyshev nodes that are the tensor product of the
Chebyshev nodes of each interval on the r and z axes.

From the Chebyshev polynomials Fong and Darve derive the interpolation functions

Rn(x,y) =

(
1

n
+

2

n

n−1∑
i=1

Tn(r)Tn(z)

)(
1

n
+

2

n

n−1∑
i=1

Tn(r′)Tn(z′)

)
for x = (r, z) and y = (r′, z′). From there we can construct a low-rank approximation for
the mth modal Green’s function given by

sm(x,y) =
n∑

l1=1

n∑
l2=1

n∑
m1=1

n∑
m2=1

sm(xl1,l2 ,ym1,m2
)Rn(xl1,l2 ,x)Rn(ym1,m2

,y) (18)

and apply it to approximate the sum in equation (12) by

fm(xi) =

n∑
l1=1

n∑
l2=1

Rn(xl1,l2 ,xi)

n∑
m1=1

n∑
m2=1

sm(xl1,l2 ,ym1,m2
)

N∑
j=1

σm,jRn(ym1,m2
,yj) (19)

where xl1,l2 are the Chebyshev nodes in the target box, and ym1,m2
are the Chebyshev

nodes in the source box.

15

5.1 Translation operators

This low-rank approximation in equation (18) yields translation operators for this method.
For a given mode m, we detail each operation.

• S2M : The source-to-multipole operation computes weights Wm,B
m1,m2 at each Cheby-

shev node ym1,m2
by anterpolation in a box B.

Wm,B
m1,m2

=
∑
yj∈B

σm,jRn(yBm1,m2
,yj) (20)

for mi = 1, . . . , n.

• M2M : The multipole-to-multipole operation translates weights at the nodes of four
child boxes Bi, W

m,Bi
m1,m2 , to weights at the nodes of its parent box A, Wm,A

m1,m2 .

Wm,A
m1,m2

=
4∑
i=1

n∑
m′

1=1

n∑
m′

2=1

Wm,Bi

m′
1,m

′
2
Rn(yAm1,m2

,yBi

m′
1,m

′
2
) (21)

for mi = 1, . . . , n.

• M2L: The multipole-to-local operation computes the far-field contribution at Cheby-
shev nodes xAl1,l2 in box A from all boxes Bi in the interaction list of A.

gm,Al1,l2
=
∑
Bi

n∑
m1=1

n∑
m2=1

Wm,Bi
m1,m2

sm(xAl1,l2 ,y
Bi
m1,m2

) (22)

for li = 1, . . . , n.

• L2L: On the root level let fm,Al1,l2
= gm,Al1,l2

and use the local-to-local operation to obtain
the full local expansion by adding the far-field contribution from the parent box B

fm,Al1,l2
= gm,Al1,l2

+

n∑
l′1=1

n∑
l′2=1

fm,Bl1,l2
Rn(xAl1,l2 ,x

B
l′1,l

′
2
) (23)

for li = 1, . . . , n where B is the parent box of box A. This f is analogous to the local
expansion in the analysis-based FMM.

• L2T : The local-to-target operation computes fm(xi) for target point xi in box B by
interpolating the far-field approximation.

fm(xi) =
n∑

l1=1

n∑
l2=1

fm,Bl1,l2
Rn(xBl1,l2 ,xi) (24)

16

In general, one advantage of the bbFMM is a small pre-computation even for large systems.
The pre-computation for any kernel (even not translation invariant) is just O(N). This
is due to the fact that we don’t need kernel evaluations, which are costly, to obtain all
but the M2L operators. In the case of the modal Green’s function, we have another pre-
computational advantage. Since the S2M , M2M , L2L, and L2T , translation operators in
this scenario only depend on the interpolation functions Rn, then they are constant over
all 2M + 1 modes. So we only need to be pre-compute one set of these operators, instead
of 2M + 1 separate sets (one for each mode) as in the KIFMM.

5.2 Vectorization of the bbFMM for the modal Green’s function

A huge disadvantage of the KIFMM was that we would need to separately complete the
entire algorithm 2M + 1 times to account for each node. In contrast, with the bbFMM, we
can utilize a matrix representation that includes all Chebyshev nodes and all Fourier modes
to further accelerate translation operations. We call this representation the vectorization
of the bbFMM for the modal Green’s function.

Consider σm, j is the charge of the jth source in the mth Fourier mode of σ as in
§3.1. We can represent this as the m, jth entry in a (2M + 1) × N matrix. Performing
the S2M step for all modes is now a matrix-matrix multiplication with the analogously-
defined N×n2 matrix with interpolation function entries Rn(ym1,m2

,yj). The result is the

equivalent density matrix [Wm,B
m1,m2], which has 2M + 1 rows (one for each Fourier mode),

and n2 columns (one for each Chebyshev node).
Further translation operations can now be computed as using matrix operations as well,

which in practice can be performed quickly. Using this vectorization representation, we
can perform the S2M , M2M , L2L, and L2T operations for every mode at once, rather
than 2M + 1 separate runs as in the KIFMM, which is a big computational advantage.

5.3 Accelerating the M2L operation

The M2L operation deserves special attention because it does depend on the kernel sm and
is the most expensive operator to pre-compute and to apply as well. That being said, there
are many techniques for accelerating not only the pre-computation of the M2L operator
but also its application as described in [1], [2], [3], [8], and [9].

The computation of the sm, not to be confused with its evaluation, using the Fast
Fourier Transform (FFT), generates each of the 2M + 1 Fourier modes all at once. We
know that sm satisfies the following equation as stated in §3.1,

sm =

∫ 2π

0

1

4π|x− y|
e−imθ

′
dθ′ (25)

So for x and y well-separated, we can use the discrete FFT on |x− y| to get all modes sm
for use in the M2L.

17

Once we have the modal Green’s functions sm, they can be evaluated efficiently using
techniques described in [1], [9], and others. The full bbFMM in [3] also includes a reduction
of the cost of the M2L operation by using SVD compression, based on results in [2] and
[8].

6 Conclusion and Future Work

We need to complete the full algorithm for the modal FMM based on the bbFMM, fully
utilizing the efficient pre-computation, vectorization, and M2L acceleration. Once this is
complete, we can test the full implementation.

Appendices

A Legend

N the number of source points in the computational domain

m the index for each Fourier mode of the Green’s function

M the truncation parameter for the Fourier expansion of the Green’s function

n the number of Chebyshev nodes in each interval

xi target points

xl1,l2 Chebyshev nodes in the target box

yj source points

ym1,m2
Chebyshev nodes in the source box

B Implementation and Testing

Currently, we are able to produce and have tested all equivalent densities and translation
operators with Python programs for the Chebyshev interpolation-based bbFMM. However,
for now we are just using the kernel, log |x−y|, for ease of evaluation, instead of the modal
Green’s function for Laplace’s equation. However, these functions are very similar so we
expect these tests to succeed with the modal Green’s function as well.

Much of the future work to do is a full FMM implementation in Python. Key pieces
of this will be accelerating the M2L operation by efficiently evaluating the modal Green’s
function, using the vectorization discussed in §6, and using singular value decomposition
(SVD) compression technique described in [2], [3], [4] and [?].

18

The following are descriptions of the computations done by each of our test programs.
These tests are standard practice to debug translation operators.

• S2M.py

1. Put N sources in box A and assign charges of ±1.

2. Put target in a box B in the far field.

3. For each Chebyshev node of A, assign a weight

Wm1,m2 =
N∑
j=1

σjRn(ym1,m2
,yj)

4. Compute the potential at each Chebyshev node in a target box B

fl1,l2 =
n∑

m1=1

n∑
m2=1

Wm1,m2 log(xl1,l2 ,ym1,m2
)

5. Compute the potential at the target by interpolation

f(xi) =
n∑

l1=1

n∑
l2=1

fl1,l2Rn(xl1,l2 ,xi)

6. Compare the result with the naive computation of the potential

f(xi) =
N∑
j=1

log(xi,yj)σj

• M2M

1. Put N sources in box A and assign charges of ±1.

2. For each Chebyshev node of A, assign a weight

Wm1,m2 =

N∑
j=1

σjRk(ym1,m2
,yj)

3. Repeat step 2 for the four child boxes Bi of A. Note that there will be ≤ N
sources in each child box.

4. Use the M2M operation to compute

WA
m1,m2

=

4∑
i=1

n∑
m′

1=1

n∑
m′

2=1

Rn(xAm1,m2
,xBi

m′
1,m

′
2
)WBi

m′
1,m

′
2

19

5. Compare the weight at each node with the computation in step 2.

Note that at this point if the weights match, there is no need to make sure the po-
tential estimates match the naive potential computation.

• M2L.py
Note that this is the case where there is no L2L contribution to the local expansion
of a box B, since the parent of B has no interaction list.

1. Put a target point in a box B.

2. Put N sources in each box Ii in the interaction list of B and assign charges of
±1.

3. For each Chebyshev node of Ii, assign a weight

W Ii
m1,m2

=
N∑
j=1

σIij Rn(ym1,m2
,yIij)

4. Calculate the far-field contribution at the Chebyshev nodes of B

fl1,l2 =
∑
Ii

n∑
m1=1

n∑
m2=1

W Ii
m1,m2

log(xBl1,l2 ,y
Ii
m1,m2

)

5. Compute the potential at the target point by interpolation

f(xi) =

n∑
l1=1

n∑
l2=1

fl1,l2Rn(xl1,l2 ,xi)

6. Compare the result with the naive computation of the potential

f(xi) =
∑
Ii

N∑
j=1

log(xi,y
Ii
j)σIij

• L2L.py
Note that this is the case where there is no M2L contribution to the local expansion
of a target box B, since B has no interaction list.

1. Put a target point in a box B, with parent box P .

2. Put N sources in each box Ii in the interaction list of P and assign charges of
±1.

20

3. For each Chebyshev node of Ii, assign a weight

W Ii
m1,m2

=

N∑
j=1

σIij Rn(ym1,m2
,yIij)

4. Calculate the far-field contribution at the Chebyshev nodes of the parent of B

fl1,l2 =
∑
Ii

n∑
m1=1

n∑
m2=1

W Ii
m1,m2

log(xPl1,l2 ,y
Ii
m1,m2

)

5. Compute the potential at the target point by interpolation

f(xi) =
n∑

l1=1

n∑
l2=1

fl1,l2Rn(xl1,l2 ,xi)

6. Compare the result with the naive computation of the potential

f(xi) =
∑
Ii

N∑
j=1

log(xi,y
Ii
j)σIij

Note that in the case where there is a contribution from both the M2L and L2L operations,
the local expansion is simply the sum of these contributions. Also note that the efficacy of
the L2T computation is shown in the last step of the S2M , M2L, and L2L computations.

References

[1] Adbelmageed, A., Efficient Evaluation of Modal Green’s Functions Arising in EM
Scattering by Bodies of Revolution. Progress in Electromagnetics Research, PIER 27,
(2000), 337-356.

[2] Cheng, H., Gimbutas, Z., Martinsson, P.G., Rokhlin, V., On the Compression of Low
Rank Matrices. SIAM Journal of Scientific Computing, 26(4), (2005), 1389-1404.

[3] Fong, W., Darve, E., A black-box fast multipole method. Journal of Computational
Physics, 228, (2009), 8712-8725.

[4] Gimbutas, Z., Rokhlin, V., A Generalized Fast Multipole Method for Nonoscillatory
Kernels. SIAM Journal of Scientific Computing, 24(3), (2002), 796-817.

[5] Greengard, L., Rokhlin, V., A Fast Algorithm for Particle Simulations. Journal of
Computational Physics, 73, (1987), 325-348.

21

[6] Hao, S., Martinsson, P.G., Young, P., An efficient and highly accurate solver for
multi-body acoustic scattering problems involving rotationally symmetric scatterers.
Computers and Mathematics with Applications, 69, (2015), 304-318.

[7] Helsing, J., Karlsson, A., An explicit kernel-split panel-based Nyström scheme for
integral equations on axially symmetric surfaces, arxiv.org/abs/1310.4715, (2014).

[8] Martinsson, P.G., Rokhlin, V., An accelerated kernel-independent fast multipole
method in one dimension. SIAM Journal of Scientific Computing, Vol. 29, No. 3,
(2007), 1160-1178.

[9] Vaessen, J.A.H.M., van Beurden, M.C., Tijhuis, A.G., Accurate and Efficient Compu-
tation of the Modal Green’s Function Arising in the Electric Field Integral Equation
for a Body of Revolution. IEEE Transactions on Antennas and Propagation, 60(7),
(2012), 3294-3304.

[10] Ying, L., Biros, G., Zorin, D., A kernel-independent adaptive fast multipole method
algorithm in two and three dimensions. Journal of Computational Physics, 196, (2004),
591-626.

[11] Young, P., Yao, S., Martinsson, P.G., A high-order Nyström discretization scheme
for boundary integral equations defined on rotationally symmetric surfaces. Journal of
Computational Physics, 231, (2012), 4142-4159.

22

