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The use of CRISPR/Cas gene editing technology has the potential to excise the CCR5 gene from

hematopoeitic progenitor cells, rendering their differentiated CD4+ T cell descendants HIV resistant.

In this manuscript, we describe the development of a mathematical model to mimic the therapeutic po-

tential of CRISPR/Cas gene editing of hematopoietic progenitor cells to produce a class of HIV resistant

CD4+ T cells. We define the requirements for the permanent suppression of viral infection using gene

editing as a novel therapeutic approach. We develop nonlinear ordinary differential equation (ODE) mod-

els to replicate HIV production in an infected host, incorporating the most appropriate aspects found in

the many existing clinical models of HIV infection, and extend this model to include compartments rep-

resenting immune cells made resistant to HIV infection by the CRISPR/Cas intervention. Through an

analysis of model equilibria and stability and computation of R0 for both treated and untreated infections,

we show that the proposed therapy has the potential to suppress HIV infection indefinitely and return

CD4-positive (CD4+) T cell counts to normal levels. A computational study for this treatment shows the

potential for a successful “functional cure” of HIV. A sensitivity analysis illustrates the consistency of

numerical results with theoretical results and highlights the parameters requiring better biological justi-

fication. Simulations of varying levels production of HIV resistant CD4+ T cells and varying immune

enhancements as the result of these indicate a clear threshold response of the model, and a range of treat-

ment parameters resulting in a return to normal CD4+ T cell counts.

Keywords: CRISPR/Cas, HIV, Mathematical Model, gene editing, hematopoietic progenitor cell, sensi-

tivity analysis, threshold phenomena
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1. Introduction3

HIV infection of CD4-positive (CD4+) T cells leads to their rapid decline and compromises the4

host’s immune system leading to death of the infected patient from infection or cancer (Okoye &5

c⃝ The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



2 of 32 Ratti et al

Picker (2013)). In addition, HIV infection of resting memory CD4+ T cells and some subsets of6

macrophages results in the development of latent reservoirs of HIV-infected cells that remain dor-7

mant in tissues such as the gut and brain, but can become reactivated to produce new viral particles8

(Sebastian & Collins (2014), Persaud et al. (2000)).9

Anti-viral drugs cause the suppression of viral replication and have allowed most HIV-infected10

individuals to live a normal life-span ( Collaboration et al. (2008)). However, many of the drugs in11

the anti-viral cocktail are toxic to major organs ( Carr (2003)). Moreover, none of the current drugs12

can remove the integrated viral genome, so patients must remain on anti-retroviral therapy for life13

because even brief interruptions of this therapy result in the resumption of viral replication leading14

to high levels of circulating virus (for Management of Antiretroviral Therapy (SMART)). There is15

an urgent need to develop therapies that can allow patients to safely cease anti-viral therapy.16

Gene editing using CRISPR/Cas has emerged as an exciting new mechanism to cleave the inte-17

grated HIV genome in infected cells, and also to destroy cellular genes required for viral binding and18

internalization including CCR5 ( Lebbink et al. (2017), Tebas et al. (2014), Kaminski et al. (2016),19

Huang & Nair (2017)). Several methodologies to achieve gene editing have been developed includ-20

ing the use of zinc-finger nuclease (ZFN)(Durand & Siliciano (2014)), transcription activator-like21

effector nuclease (TALEN) (Strong et al. (2015)), and clustered repetitive interspersed palindromic22

repeats /CRISPR-associated (CRISPR/Cas) ( Huang & Nair (2017)). Both ZFN and TALEN require23

a unique enzyme to cleave a specific gene sequence, whereas CRISPR/Cas makes use of a comple-24

mentary sequence of RNA, called a guide RNA, together with the DNA cleaving enzyme (Cas) (Hsu25

et al. (2014)). CRISPR/Cas has emerged as the most efficient approach to achieve gene editing as26

it only requires the development of unique guide RNA sequences to bind to regions within the tar-27

geted gene sequence, and this RNA molecule guides the Cas enzyme to mediate a double-stranded28

cleavage cut essentially mutating the DNA and preventing gene transcription.29

In the case of HIV-1, CRISPR/Cas has been developed to target and destroy viral genes such30

as the integrated HIV genome, to prevent the production of new viral particles. The permanent31

integration of the CRISPR/Cas guide RNA and Cas sequences targeting the integrated HIV pro-virus32

in a healthy cell also protects these cells from becoming infected with HIV-1. Although the guide33

RNA and the Cas components of CRISPR/Cas can be delivered to a target cell in any number of34

methods, the use of a viral vector such as a lentiviral vector leads to the permanent integration of the35

vector’s transgene into the target cell genome to constitutively transcribe both the guide RNA and the36

Cas (Ortinski et al. (2017)). The guide RNA is a single stranded RNA molecule of approximately 2037

nucleotides in length designed to bind to a specific target gene region. In the case of HIV-1, we have38

designed guide RNA sequences to bind to regions within the HIV-1 pro-virus such that a cleavage39

cut within this region would permanently disable the production of new viral particles.40

Alternatively, cellular gene excision has been proposed using gene editing techniques. The most41

likely cellular gene target is that which encodes the CCR5 receptor, as this receptor is dispensable42

for immune protection. A natural mutation in the CCR5 gene, termed delta-32, is commonly found43

in from 1 to 5 percent of individuals with no apparent negative effect (Novembre et al. (2005)).44

Targeting the CCR5 cellular gene is attractive for several reasons. In this way one can eliminate the45

CCR5 gene in hematopoietic progenitor cells such that all resultant progeny will be CCR5-negative.46

The CCR5 receptor is required for HIV infection, but is not absolutely required for immune cell47

function. Thus, eliminating the CCR5 receptor will have no negative consequences on the health48

or immune responses of individuals. In alternative studies, we have also developed guide RNA49

sequences that target the cellular gene for CCR5, a cell membrane receptor required in addition to50

CD4, for HIV-1 infection of target cells.51

Whichever gene is targeted, the delivery of the guide RNA and Cas sequences via a lentiviral52

vector can result in the constitutive expression of the guide RNA and Cas molecules due to the53

permanent integration of these sequences into a target cell genome. In the case of targeting the54
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integrated viral genome known as the pro-virus, delivery of the guide RNA and Cas sequences55

results in both the cleavage of the integrated HIV genome present in an infected cell, and also56

protects uninfected cells from ever becoming infected with HIV.57

Targeting the cellular gene CCR5 has been studied in both mature T cells as well as in the58

hematopoietic progenitor cell, where CCR5 gene disruption will occur in all progeny during hematopoi-59

etic differentiation (cf Peterson et al. (2014)). Genetically modifying hematopoietic progenitor cells60

that produce HIV resistant CD4+ T cells is a particularly promising intervention, as these progenitor61

cells have a long lifespan and therefore can potentially have a sustained effect on HIV suppression.62

This specific intervention is the one modeled here.63

Our hypothesis is that, by modifying some proportion of the hematopoietic progenitor cell popu-64

lation, all CD4+ progeny cells will be CCR5-negative. Defining the numbers of CCR5 gene-cleaved65

progenitor cells necessary to provide a sufficient number of CCR5-negative, HIV resistant, immune66

cells is a critical aspect to the eventual development of a therapy consisting of gene-modified cells.67

If the CCR5 gene can be cleaved in a critical proportion of hematopoietic progenitor cells in HIV-68

infected patients, these gene modified cells will produce HIV resistant cells, allowing patients to69

eventually cease taking anti-retroviral drug therapies. Currently lacking, however, are the tools nec-70

essary to predict how this therapy will function in a patient, and the impact that changes in the71

numbers of gene-modified cells will have on the immune system. Refinement to the model devel-72

oped here to accurately predict the outcome of such therapy will hasten the development of a clinical73

trial.74

Mathematical modeling of HIV has been documented since the early 1990’s. In addition to75

several review articles discussing the various mathematical models ( Buratto et al. (2014), Baggaley76

et al. (2005), Stafford et al. (2000)), models of HIV and the dynamics of viral replication with the77

host immune system go back to early efforts to understand the dynamics of the system (Perelson78

et al. (1996), Perelson & Nelson (1999), Perelson et al. (1993), Nowak & May (1991), Pandit &79

De Boer (2015)).80

To understand how models are currently used to represent the progression of this disease, we81

considered 40 recent models of within-host dynamics, all of which are expressed as nonlinear sys-82

tems of differential equations. Of these models, one used stochastic differential equations Wang,83

Liu, Xu & Zhang (2015) and eight used delayed differential equations (Huang et al. (2016), Elaiw84

& Almuallem (2015), Li & Wang (2015), Li et al. (2015), Alshorman et al. (2016), Pitchaimani &85

Monica (2015), Sahani (2016), Balasubramaniam et al. (2015), Elaiw & Almuallem (2016)). In ad-86

dition, the focus of several of these papers was somewhat different from ours. Twenty seven models87

resembled the approach taken in this study. All of these models include T-cells. One includes free88

virus but not infected T cells (Joly et al. (2016)). Two include infected T cells but not free virus89

(Balasubramaniam et al. (2015), Rana et al. (2015)). The rest include both. Four models include90

multiple viral strains (Chen et al. (2015), Pankavich & Shutt (2015), Luwanda & Mwambi (2016),91

Ke et al. (2015)).92

To model the production of T cells, five models used a logistic term (Luo et al. (2016), Birger93

et al. (2015), Ogunlaran & Oukouomi Noutchie (2016), Rahmoun et al. (2015), Ikeda et al. (2015)),94

while seventeen used constant recruitment balanced by linear death (Mojaver & Kheiri (2015), Joly95

et al. (2016), Wang et al. (2016a), Chen et al. (2015), Jo & Roh (2015), Pankavich & Shutt (2015),96

Tabit et al. (2016), Luwanda & Mwambi (2016), Arruda et al. (2015), Nakaoka et al. (2016), Wu97

et al. (2015), Wang et al. (2016b), Guo & Ma (2016), Hajizadeh & Shahrokhi (2015), Wang, Xu,98

Wang & Chen (2015), Ke et al. (2015), Wang et al. (2017)), and one study used a bounded rate99

dependent on both the T cell and viral populations (Adams et al. (2015)). Of the models reviewed,100

8 included a compartment for latent cells (Mojaver & Kheiri (2015), Pankavich & Shutt (2015), Li101

et al. (2015), Alshorman et al. (2016), Nampala et al. (2015), Wang, Xu, Wang & Chen (2015), Rana102

et al. (2015), Ke et al. (2015)).103
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It is known that in the presence of virus, activated T cells responding to the infectious state104

are both recruited to the site of viral resurgence and also proliferate in response to increasing viral105

load ( Jelley-Gibbs et al. (2000)). Four studies include both a recruitment rate of T cells and a106

proliferation rate, as we do in this study (Liu (2015), Venkatesh et al. (2016), Croicu (2015), Lekgari107

(2015)). Due to the specificity of the T cell receptor that engages an HIV-infected host cell, not all108

T cells are “activated” in response to a given virus, however (Hunt et al. (2003)). The distinction109

between “resting” T cells and “activated” T cells is important, as it is more likely that activated cells110

become infected by HIV (Biancotto et al. (2008)). This distinction is made in only one of the studies111

reviewed (Luwanda & Mwambi (2016)).112

None of these recent studies incorporated all of the populations we use in our model for HIV113

dynamics in an untreated patient: resting, activated, infected and latent T cells, as well as viral114

load. In addition, the model we have developed describes the potential ongoing effect of gene115

edited progenitor cells that will produce HIV resistant CD4-positive cells for the duration of their116

survival. We give a discussion of the default parameters producing the typical disease trajectory of an117

untreated individual, derived whenever possible from direct biological measurements. We analyze118

the sensitivity of the model and run a series of numerical experiments showing distinct threshold119

behavior in the treatment parameters. The model indicates a clear threshold behavior for the percent120

of gene edited hematopoetic progenitor cells that must be introduced to achieve a functional cure for121

HIV.122

2. Model development123

2.1 Model124

We propose a mathematical model for HIV in an individual that includes five compartments that125

capture the dynamics of an HIV-infected individual who is not undergoing anti-retroviral therapy and126

two further compartments representing gene modified populations of CD4-positive/CCR5-negative127

cells that are resistant to HIV due to lack of the CCR5 receptor. These populations have a therapeutic128

role in that they can respond to a virus but are themselves resistant to infection. This study includes129

an analysis of the full model and also the five compartment submodel corresponding to an untreated130

individual.131

Figure 1 illustrates the different populations and their interactions in both stages of modeling.132

The dotted box in this figure shows the two gene enhanced CD4+ cell populations, P and Q, which133

are resistant to HIV infection but otherwise immunologically competent. We study the dynamics of134

the disease in the presence of this therapeutic population in the second stage.135

136
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FIG. 1. Hematopoetic progenitor cells produce CD4+ T cells at a constant rate a. A fraction, w, of these will be HIV resistant
(P ). The rest (R) will be unmodified. These resting T cell populations become activated to produced two classes of T cells
(Q and T ) of which only the genetically unmodified T cells (T ) are susceptible to HIV infection. Infected cells, (I), may
become latent, (J) or may produced virions, (V ).

2.2 Model equations137

The model equations are as follows138

dR

dt
= (1−w)a−

(

q+ uq
V

α +V

)

R (2.1)

dT

dt
= −dT − kTV +

(

q+ uq
V

α +V

)

R+ bT
V

α +V
(2.2)

dI

dt
= kTV − eI−mI+ nJ (2.3)

dV

dt
= epI− cV −β QV − kTV (2.4)

dJ

dt
= mI − nJ (2.5)

dP

dt
= wa−

(

q+
uqV

α +V

)

P (2.6)

dQ

dt
=

(

q+
uqV

α +V

)

P+
bQV

α +V
− dQ (2.7)

Equation (2.1) describes the dynamics of “resting” or as yet unactivated CD4+ cells produced139

by unedited progenitor cells at a constant rate, a.The parameter w determines the fraction of HIV140

resistant CD4 cells being produced by gene edited progenitor cells. Setting w = 0 and P(0) =141

Q(0) = 0 gives a model for an untreated individual. These cells are activated constantly in response142

to background virus at rate q. In the presence of HIV, they are activated at a bounded rate in response143

to the presence of virus, V , with maximal rate uq.144

Equation (2.2) describes the activated, and therefore susceptible, CD4+ cells that express the145

CCR5 protein. In addition to activation, these cells proliferate in response to virus at a rate bounded146

by b. They also die at constant rate d and become infected with virus at rate kTV . We assume these147

susceptible immune cells have a negligible effect on reduction of HIV infection as there is no data148

in the literature supporting the existence of successful immune system.149
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Equation (2.3) describes the infected CD4+ cell compartment. Infected cells release virus and150

apoptose at rate e, releasing virions. In addition some of these infected cells become “latent”, passing151

into compartment J at rate mI and returning from that compartment at rate nJ.152

Equation (2.4) describes the dynamics of free virus, which is produced at rate epI where e is the153

death rate of infected cells and p is the number of virions released per cell. Free virions die without154

a host, at rate cV and enter host cells at rate kTV . In addition the model assumes that a fraction155

of HIV resistant activated CD4+ cells Q will have the capacity to elicit an immune attack on HIV.156

Although the process of mounting an immune attack is complex and requires many types of cells,157

for simplicity we consider it an effect of the presence of Q and model this effect as removal of free158

virus at rate β QV .159

Equation (2.5) describes the linear exchange between infected and latent compartments. The160

relative size of the two rates mI and nJ can be estimated but the actual rates are not known.161

Equation (2.6) describes the production of gene edited HIV resistant cells by a fraction w of162

genetically altered progenitor cells. We assume that background activation rate q is the same as for163

unaltered cells and that, in addition, the presence of HIV virus will cause increased activation at the164

same rate as for unaltered cells (R).165

Equation (2.7) describes the dynamics of activated HIV resistant cells, which are exactly the166

same as for HIV susceptible cells except that no infection term analogous to the kTV in Equation167

(2.3) is present.168

2.3 Parameterizing the model169

Parametrizing models with many parameters can be approached by reducing the complexity of the170

task via assumptions and direct biological measurement when possible (Adams et al. (2015)). In this171

study parameters are derived from biology using laboratory measurement experiment when possible172

and an approximate fit to the well known disease progression of HIV otherwise. These are given in173

Table 1.174

2.3.1 Parameters determined from HIV free individuals, a,q,d For individuals without disease175

the model equations are as follows176

dR

dt
= a− qR (2.8)

dT

dt
= qR− dT (2.9)

At equilibrium we then have R∗ = a/q and T ∗ = a/d. All units will be given in cells per µL, or177

cells per µL per day as appropriate.178

Measurements of HIV free individuals are starred in Table 1. Fleury et al. (2000) reports 10.4±179

6.5 as the daily production rate of cells, a. They also report the total CD4 count as 967 (R∗+T ∗)180

and the fraction of proliferating (activated) cells, ( T ∗

R∗+T ∗ ), as 1.06% in the blood and 0.75% in the181

lymph node. Hunt et al. (2003) reports 2% of cells activated in a healthy individual. We will take182

the higher value of 2 %.183

A calculation yields R∗ = 0.98(967) = 10.4/q and q = 0.01097.184

Similarly, T ∗ = 0.02 ∗ (967)= a/d = 10.4/d and d = 0.5377.185

2.3.2 Parameters determined from HIV infected individuals without treatment (w= 0), m/n,c, p,e,b186

In Equations (2.10)-(2.13)we might assume that J arrives at a constant fraction of I in relatively short187

time and remains at that fraction, which has been loosely estimated at “one in a million” ( Chun et al.188
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(1997)). Assuming that dJ
dt = 0 we have the relation ship J = (m/n)I, where m/n is approximately189

10−6. This relationship also reduces the equations (3.1)-(3.4) to a simpler system:190

dR

dt
= a−

(

q+ uq
V

α +V

)

R (2.10)

dT

dt
= −dT − kTV +

(

q+ uq
V

α +V

)

R+ bT
V

α +V
(2.11)

dI

dt
= kTV − eI (2.12)

dV

dt
= epI− cV − kTV (2.13)

The virus has a 3-4 minute half life outside of an infected cell ( Zhang et al. (1999)). A four191

minute half life corresponds to 0.00277 days. A 3 minute half life results in a death rate c of 333192

percent per day. Virion production rate per cell, p, is estimated at 5× 104 per cell and the life span193

of an infected cell is estimated to be about one day ( Boer et al. (2010)), giving a virion induced194

apoptosis rate of 100% per day, or e = 1. The doubling time of an activated cell is estimated at 7-10195

hours ( Jelley-Gibbs et al. (2000)). We will take it as 8 hours, or 0.333 days. This gives a maximum196

reproduction rate of activated cells of ln(2)/0.333 = 2.08 However only a fraction of CD4+ cells197

will activate in response to a particular virus, so we take approximately 25% of this and set the198

maximum rate (b) equal to 0.5.199

This leaves parameters m,u,α and k, which cannot be observed directly but must be inferred by200

fitting the model to time series data. The expected development of untreated HIV has been studied201

extensively, with an often quoted figure in a paper by Perlmutter et al. (1999) that shows peak viremia202

in early stages at around 103 virions per µL of plasma. Our model peaks at a substantially higher203

level but qualitatively shows the same pattern of viremia.204

The Perlmutter study reports less than 10 per µL during a latent period starting sometime after 12205

weeks, although subsequent studies show high variability among individuals with long term virion206

levels as high as a 1000 per µL (Fraser et al. (2007)). In addition, CD4+ counts drop from an initial207

103 cells per µL to latent levels between 200 and 600 cells per µL. The Perlmutter data also show208

resurgence of disease after some years, which is not modeled here. In addition, it is known that the209

percent of activated cells rises to as much as 8% (Hunt et al. (2003)). With the parameters listed in210

Table 1, Figure 2 shows a maximum viral load of about 25,000 per µL in less than 10 days, which211

declines to around 2000 per µL at equilibrium. The CD4+ cells decline to less than 200 per µL and212

remain at equilibrium there. The percent of activated cells rises to over 30% after an initial peak.213

Note that parameters for HIV resistant cells are the same as for unaltered cells except for β which214

describes the unknown efficiency with which HIV resistant cells reduce viral load, and parameter w215

which describes the percent of HIV resistant cells produced by CRISPR modified stem cells. Figure216

2 shows the progress of HIV in an untreated individual given by the model with default parameters217

in Table 1.218

219

220
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FIG. 2. Model without P and Q: (a) CD4+ count drops from normal to under 200 per µL and initial viremia rises to 2.5×104

within 2 weeks and drops to a steady state higher than reported. (b) Progression of percent activated CD4+ cells over time.
Parameter values are given in Table 1.

3. Model Analysis221

In this section we determine existence and stability properties of the model. We also compute the222

basic reproductive ratios R0 and RP
0 for the model without HIV resistant cells and with HIV resistant223

cells respectively. Detailed proofs of the results are given in the Appendix.224
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FIG. 3. With 50% of new CD4+ cells HIV resistant, and an immune response to HIV, the model predicts a fully recovered
immune system in the presence of HIV resistant cells. (w = .5,β = 10, remaining parameters as in Table 1) (Figure produced
by Matlab. MATLAB (2016))

3.1 Submodel without HIV resistant cells225

Model equations in the absence of HIV resistant cells are as follows:226

dR

dt
= a−

(

q+ uq
V

α +V

)

R (3.1)

dT

dt
= −dT − kTV +

(

q+ uq
V

α +V

)

R+ bT
V

α +V
(3.2)

dI

dt
= kTV − eI−mI+ nJ (3.3)

dV

dt
= epI− cV − kTV (3.4)

dJ

dt
= mI− nJ (3.5)
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THEOREM 3.1 The equilibrium values for the system described by Equations (3.1)-(3.5) are given227

as roots of a cubic polynomial in J:228

J(J
2
+ a1J+ a0) = 0 (3.6)

where:229

a1 =
m[kαc− ka(p− 1)+ c(d− b)]

ken(p− 1)

a0 =
cm2α(cd − ka(p− 1))

ke2n2(p− 1)2

COROLLARY 3.1 (Disease-free equilibrium). The model equations (3.1) - (3.5) have a disease-free230

equilibrium E0 = (a/q,a/d,0,0,0). Further the disease-free equilibrium is the only equilibrium if231

p = 1+ cd
ka and b = αk.232

LEMMA 3.1 If p < 1 there is no endemic equilibrium.233

THEOREM 3.2 (Endemic equilibrium) The model has either one or two endemic equilibrium points,234

determined by parameter values as follows:235

1. Let p = 1+ cd
ka and b > αk. Then there exists one endemic equilibrium.236

2. Let p > 1+ cd
ka . Then there exists one endemic equilibrium.237

3. Let 1 < p < 1+ cd
ka and αk < b < ak+ d +αk. Then there exists two endemic equilibria E1

3238

and E2
3 .239

4. Above mentioned cases are the only ones giving positive equilibria.240

THEOREM 3.3 (Stability: disease-free equilibrium) The disease-free equilibrium E0 =(a/q,a/d,0,0,0)241

is unstable if p > 1+ cd
ka .242

THEOREM 3.4 The basic reproduction number, R0 for the model (3.1)-(3.5) is given by:243

R0 =
m

2(e+m)
+

√

(

m

2(e+m)

)2

+
kaep

(ka+ cd)(e+m)
. (3.7)

3.2 Model with HIV-resistant cells244

The full system with HIV resistant cells has equilibria defined by a quartic polynomial. We begin245

the analysis by verifying the root corresponding to the disease-free equilibrium.246

THEOREM 3.5 (Disease-free equilibrium.) The model with HIV resistant cells (equations (2.1)-247

(2.7)), has a disease-free equilibrium given by E ′
0 = ((1−w)a/q,(1−w)a/d,0,0,0,wa/q,wa/d).248

THEOREM 3.6 (Stability: disease-free equilibrium). The disease-free equilibrium E ′
0 is unstable if249

p > 1+ cd
ka(1−w) +

β w
k(1−w) .250

THEOREM 3.7 The basic reproduction number for the model with HIV resistant cells is given by251

RP
0 =

m

2(e+m)
+

√

(

m

2(e+m)

)2

+
kaep(1−w)

(cd + ka(1−w)+β wa)(e+m)
. (3.8)

An algebra calculation leads to the following observation.252
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COROLLARY 3.2 RP
0 < 1 if and only if p < 1+ cd

ka(1−w) +
β w

k(1−w) .253

THEOREM 3.8 The remaining equilibrium values for the system described by Equations (2.1)-(2.7)254

are given as roots of a cubic polynomial in the state space variable Q as follows:255

0 =C3Q3 +C2Q2 +C1Q1 +C0

where256

C3 = (p− 1)−1((−d−αk+ b)αdβ (b− d)− dαβ (b−d)2− kα2d2β ) (3.9)

C2 = α(1−w)ak(b− d)2+(p− 1)−1((−d−αk+ b)α(dβ wa+ dc(b− d)−waβ(b−d))

− dα(p− 1)−1(2β wa(b− d)+ c(b− d)2)

+ (1−w)akαd(b− d)− kα2(p− 1)−1(−2dwaβ + d2c) (3.10)

C1 = α(1−w)ak2(b− d)wa+(p− 1)−1((−d−αk+ b)α(dcwa−w2a2β −wac(b− d))

− (p− 1)−1dα(β w2a2 + c2wa(b− d))

+ (1−w)akα(dwa−wa(b− d))− (p−1)−1kα2(w2a2β − 2dwac) (3.11)

C0 = (p− 1)−1((−d−αk+ b)α(−w2a2c)− dαcw2a2 − kα2w2a2c) (3.12)

3.3 Simulations of the analytical results257

This simulation experiment (represented by Figure 4) mimics the results of the stability analysis of258

the model with and without HIV resistant cells (P and Q). Panels 4 (a) and 4 (b) correspond to the259

model without HIV resistant cells. The model was run without disease until it reached a steady state.260

HIV was introduced into the system by using positive values for the initial I and V population. This261

experiment was done for p = 10000 (such that p < 1+ cd
ka is satisfied) and then for p = 50000(such262

that p > 1+ cd
ka is satisfied). The two values for p were chosen to verify analytical results using263

simulation experiments. Remaining parameters are given in the legend of Figure 4. The parameters264

also satisfy αk < b< ak+d+αk (cf Theorem 4). For p< 1+ cd
ka , the virion population immediately265

drops down from 300 to 0 and stays there. For p > 1+ cd
ka , the virion population increases and266

reaches a maximum of 10,0000 virions and after a few oscillations then stabilizes at 9000. Figure 4267

(b) represents the phase portrait (T vs V ) for p < 1+ cd
ka and p > 1+ cd

ka .268

Panels 4 (c) and 4 (d) correspond to the model with HIV resistant cells. We ran the simulations269

for the parameters for which the disease-free equilibrium of the model without HIV resistant cells is270

unstable (i.e. p > 1+ cd
ka ). We then introduced HIV resistant cells into the system for two choices of271

parameters (i) p = 10000 such that p < 1+ cd
ka(1−w) +

β w
k(1−w) is satisfied and (ii) p = 50000 such that272

p < 1+ cd
ka(1−w) +

β w
k(1−w) is satisfied. Remaining parameters are given in the figure legend. Temporal273

dynamics of virion population (in Figure 4 (c)) suggests that for p < 1+ cd
ka(1−w) +

β w
k(1−w) , the virion274

population drops down from 8950 to 0 and stays there. However for p > 1+ cd
ka(1−w) +

β w
k(1−w) , the275

virion population reaches a steady state of 2100 virions after 1000 days. Panel 4 (d) represents the276

phase portrait of T and V population. It is observed that for p > 1+(cd+β w)(ka(1−w))−1, the277

activated CD4+ cells and virions reaches an endemic equilibrium and for p < 1+ cd
ka(1−w) +

β w
k(1−w)278

the activated CD4+ population increases to 820 cells per µL but the virion population dies off.279

Note that the survival and die off of the virions and CD4+ population takes place under the same280

conditions as predicted by the model analysis.281

282
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FIG. 4. Panels (a) and (b) correspond to the model without HIV resistant cells. Panel (a) shows the temporal dynamics of
the virions and panel (b) shows the phase portrait (T vs V ). Panels (c) and (d) correspond to the model with HIV resistant
cells, with β = 0.1,w = 0.2. Each panel represents two different scenarios based on the values of p. Parameters used are not
biologically derived but are chosen to illustrate the theorems. (a = 20,q = 0.05625,u = 200,d = 1/87,b = 0.01,k = 2.4∗
10−6,α = 1000,e = 0.25,m = 10−6,n = 1,c = 100). Initial conditions for (i) panels (a) and (b) are [355,1740,300,700,10]
(ii) panels (c) and (d) are [1.95,833,8958,71,10]. (Figure produced by Matlab MATLAB (2016)).

4. Numerical experiments283

4.1 Sensitivity of the Model284

To investigate the effect of our ranges of parameters on model outcomes, a sensitivity analysis is285

performed on all parameters and initial conditions of the model. Values for each parameter are286

taken from a uniform distribution that is supported on the intervals with mean values given by Table287

1 unless otherwise stated in the figure caption, and 70% variation. A Latin Hypercube sampling288

method is used to randomly select vectors of parameter-values to be used for each run. Details of289

the Latin Hypercube Sampling procedure can be found in Stein (1987). Partially ranked correlation290

coefficients (PRCC) are calculated from these 5000 simulations where ranked parameter values are291

correlated with the infected CD4+ cells (I population) and the virions (V population).292

Figures 5 and 6 represent the correlation (negative and positive) with the outcome. The exper-293

iment is run for 100 days (Figure 5) and 500 days (Figure 6) to see whether or not the parameters294

that are significant in a short span of time are significant in the longer span as well. In both figures,295

panel (a) represents the model without HIV resistant cells and panel (b) represents the model with296
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HIV resistant cells. In panel (a) of both figures, the mean initial conditions for R,T, I,V and J are297

500, 500, 10000, 100, and 1 respectively. Similarly, in panel (b) of both figures, the mean initial298

conditions for R,T, I,V,J,P and Q are 500, 500, 10000, 100, 1, 50 and 50 respectively.299
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-0.5

0

0.5

PR
C

C

I
V

(a)

a q u d b k e m n p c w R0T0 I0 V0J0 P0Q0
-0.1

-0.05

0

0.05

0.1

PR
C

C

I
V

(b)

FIG. 5. Sensitivity analysis of the (a) Model without HIV resistant cells, (b) Model with HIV resistant cells with respect to
the infected cells (I) and virions (V ). Mean parameter values for w and β are w = 0.5,β = 10. The remaining mean parameter
values for both panels are given in Table 1 and the variation is 70%. The final time for which simulations are run is 100 days.

300

301

4.2 Cessation of antiretroviral treatment with and without HIV resistant cells302

It is thought that the reason antiretroviral (ART) therapy must be continued indefinitely may be the303

presence of a population of latently infected cells, represented in the model by J. At interruption304

of antiretroviral therapy few cells are found in circulation and the viral load is undetectable, yet the305

disease rebounds, hypothetically due to this latent compartment. The existence of latent cells has306

been verified ( Chun et al. (1997)), and to check that the model exhibits the correct behavior we ran307

it with no infected cells I or virus V but a small concentration of latent cells J. We omit a figure of308

this experiment because it cannot be distinguished visually from the default run, and looks exactly309

like Figure 2.310
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FIG. 6. Sensitivity analysis (a) Model without HIV resistant cells. (b) Model with HIV resistant cells with respect to the
infected cells (I) and virions (V ). Mean parameter values for w and β are w = 0.5,β = 10. The remaining mean parameter
values for both panels are given in Table 1 and the variation is 70%. The final time for which simulations are run is 500 days.

Although the observed ratio of I to J determines the ratio of parameter m to n, there is still an311

unmeasured rate to be determined. In Table 1 we set n = 106m but the value of m was arbitrary. We312

found that varying m by many orders of magnitude did not appreciably alter the timing or intensity313

of the rebound.314

315

4.3 Dependence of therapeutic response on the percent of HIV resistant CD4+ cells produced (w)316

and the effectiveness of their immune response to HIV (β ).317

The proposed therapy involves the successful introduction of gene edited progenitor cells into the318

immune system, which will continuously produce HIV resistant CD4+ cells at the usual rate. The319

parameter w is the fraction of progenitor cells that have been edited. A numerical experiment shows320

the result of infection after 50% of the CD4+ cells being produced are HIV resistant , under the321

assumption that β is not zero and ART therapy is discontinued. Figure 7 shows a return to healthy322

CD4+ levels when sufficiently many HIV resistant cells are being produced.323

A nonzero value of β reflects the assumption that a fraction of HIV resistant CD4+ cells will324
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FIG. 7. Model with P and Q: (a) CD4+ count drops from normal to under 200 per µL and then rebounds to normal levels.
Initial viremia rises to 2.5× 104 within 2 weeks, and drops to a set point close to zero. (b) Progression of percent activated
CD4+ cells over time. In these runs, w = 0.5,β = 10. Remaining parameter values are given in Table 1.

have a successful immune response to the HIV virion and remove it from the system. However, it325

is not known if this will be the case, or to what extent these HIV resistant cells could remove virus326

effectively. Clearly the effectiveness of treatment must also depend on the fraction of HIV resistant327

cells being produced as well as the effectiveness of their immune response to HIV. With parameters328

and initial conditions as in Table 1, Figure 8 shows a heat map of the equilibrium CD4+ count for329

various choices of w and β . There is a clear threshold effect, with few intermediate values.330

To gain some insight as to what is happening to CD4+ T cell subpopulations as the parameters331

vary, Figure 9 shows the populations of HIV resistant cells as treatment parameters vary. Infected332
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and latent cell populations are shown in Figure 10.333
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FIG. 8. Figure shows the heat map of w and β on the total CD4+ population (R+T + I + J+P+Q) at the final time.

334

335

336

5. Results and Discussion337

A mathematical model for a new gene-therapy (CRISPR/CAS) approach for treating HIV in a hypo-338

thetical patient is introduced and analyzed theoretically and using numerical simulations. The model339

for an untreated HIV infection takes into account relevant features of several models reviewed. The340

full model includes the production from gene edited hematopoietic progenitor cells of a class of341

CD4+ T cells that are HIV resistant, but otherwise immunologically competent. This model corre-342

sponds to one proposed therapeutic approach. It describes a patient whose hematopoietic progenitor343

cells were extracted from the body and treated via CRISPR/Cas to block production of the CCR5344

protein that enables HIV virus to enter CD4+ T cells. Progeny of gene-edited progenitor cells would345

be also be resistant to HIV infection and form a fraction of the total resting CD4+ T cell population346

produced. A larger proportion of these HIV resistant cells results in fewer CD4+ T Cells available347

to HIV to replicate in, resulting in higher virus death in the body. An additional benefit would arise348

from the immune response of HIV resistant CD4+ T cells to the HIV infection itself. The model349

describes a treatment that is under development in the Howell laboratory.350
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FIG. 9. Figure shows the heat map of w and β for the total HIV resistant cell population (P+Q) at the final time.

5.1 Mathematical analysis351

Equilibrium analysis tells us that there is one healthy equilibrium in both models (with and without352

compartments for HIV resistant cells). Stability analysis provides parameter thresholds for a disease-353

free state. Our calculation of the reproduction number (using Next Generation Matrix), confirms our354

findings in the stability analysis. and gives a threshold condition on the virion production rate p, for355

endemic equilibrium to exist. The threshold value of p for the model without therapy is smaller than356

when gene-therapy is introduced.357

The equilibrium and stability analysis shows that there is a region of parameter space in which358

both the disease-free and the diseased equilibria exist and are stable. Our biologically derived pa-359

rameters fall into this region. Therefore, in our model, the development of disease depends on initial360

conditions. Insufficient initial viremia will not result in HIV infection. The tendency of an organ-361

ism (in this case the HIV virus) to become extinct when its numbers fall below a certain amount362

is called the Allee effect, and we observe it in this model. It is known that not every encounter363

between a healthy and contagious individual results in disease. Our model is consistent with these364

observations.365

The expression for RP
0 makes it clear that if w is sufficiently close to 1 or if β is sufficiently large,366

the disease free equilibrium will be stable no matter what the other parameters may do. However, this367

is not enough information to determine at what level of treatment the nontrivial stable equilibrium368

values for infected cells and free virus will be pushed to negligible levels or disappear. Nor does it369
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FIG. 10. Figure shows the heat map of w and β for the infected and latent cell population (I + J) at the final time.

give information about the return of CD4+ T cells to normal levels.370

5.2 Parameters371

We begin by giving a description of default parameters based on several studies. Five studies found372

in the literature (specifically Fleury et al. (2000), Hunt et al. (2003), Boer et al. (2010), Jelley-Gibbs373

et al. (2000), Chun et al. (1997)) gave direct experimental results that allowed us to calculate specific374

parameters. A few remaining parameters were obtained by matching to a well known description375

of disease progression in Perlmutter et al. (1999). Some parameters are unknown, in particular376

the rate, m, at which infected cells become latent. The treatment parameters, w and β , are the377

quantities that must be determined experimentally (in the case of β ) or manipulated (in the case of378

w) to depress HIV sufficiently to give a functional cure. Finding direct experimental measurements379

corresponding to particular constants was difficult, and it is possible that if more studies were found380

perhaps a known range could be placed around some of the parameters in this study, in particular381

those parameters to which the model is highly sensitive.382

For the default parameters in this study, R0 < 1 and there is also a stable equilibrium with disease383

present. The initial conditions and default parameters in this study yield solutions that tend to the384

equilibrium with disease present in the case where there is no treatment, as shown in Figure 2.385

The CD4+ T cell count behaves as described in Perlmutter et al. (1999), The timing of the viral load386

behaves correctly. However both at peak and at equilibrium the model predicts a substantially higher387
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concentration of free virus than was observed in Perlmutter et al. (1999), although subsequent studies388

found much higher viral loads in some individuals, as high as 1000 per µL with substantial variation389

among individuals (Fraser et al. (2007)). The model here gives about twice that at equilibrium. The390

percent of CD4+ T cells that are activated is known to rise from around 2% to as much as 8% as391

reported in Hunt et al. (2003). With the default parameters the model produces a rise from about 2%392

to over 30%, much higher than the observed range. This observation indicates that more data and a393

better model is needed.394

5.3 Sensitivity of the model395

The sensitivity of the model outcomes (load of infected cells and virions) to changes in parameters396

is quantified in Figures 5 and 6. We find 5 parameters (p,c,d,k,a) in the model for an untreated397

individual that are most significant with regard to disease burden. These parallel the findings of the398

equilibrium analysis which shows that, for an untreated individual, the reproduction number, R0 < 1399

if and only if p− cd(ka)−1 < 1. However, the sensitivity analysis is describing the equilibrium400

values at the nontrivial stable equilibrium. The same five parameters that control the stability of401

the disease free equilibrium are also controlling the equilibrium with disease present in an untreated402

individual. In addition to the parameters appearing in the expression for R0, the parameters e and b403

are also observed to have a strong effect on the outcome.404

When treatment is present the reproduction number, RP
0 < 1 if and only if k(p− 1)(1−w)−405

cda−1 < β w. The important parameters for this criterion are p,c,d,k,a,wβ . In parallel to that result,406

the sensitivity analysis shows that these are also the most important parameters for the equilibrium407

with disease present in a treated individual.408

5.4 Treatment simulations and threshold phenomena409

The model exhibits clear threshold effects for the proposed treatment. The immune system of the410

patient either remains severely depressed or enjoys full recovery, as seen in Figure 8. If the HIV411

resistant CD4+ T cells contribute no immune response against HIV (β = 0), Figure 8 indicates412

that over 75% of CD4+ production must be HIV resistant to achieve normal levels of these cells.413

However, no estimate for β yet exists. As β increases, the percent of HIV resistant cells produced414

(w) does not need to be as large.415

Because CD4+ T cells are activated in response to virus, and then proliferate in response to416

virus, the input of gene edited cells (w) is not the sole determinant of final population values. The417

presence of virus also plays a role because activated cells have a relatively short life span. In fact,418

in this model we have ignored death rates for resting T cells entirely. If no virus were present and a419

fraction w of gene edited CD4+ T cells were produced, Equations 2.8 and 2.9 would guarantee that420

counts would arrive at normal levels with w of the cells of the gene edited type and the remaining421

1−w of the susceptible type. This is not what happens in the presence of virus. The number of gene422

edited cells (P and Q) at equilibrium for various choices of w and β are shown in Figure 9. There is423

a clear jump in population as w rises, and how quickly this jump occurs depends on β .424

Note that, above the visible threshold, the level of gene edited cells shown in Figure 9 can still be425

far below 100% of the total CD4+ T cell count, which rises to normal levels as seen in Figure 8. The426

remaining CD4+ T cells must be those that are not gene altered. These could be healthy or infected.427

But Figure 10 shows that they are healthy. Figure 10 shows the level of infected cells dropping to428

near zero (or possibly zero) in the region where Figure 8 indicates normal CD4+ T cell counts. So,429

in the region that is white in Figure 8 where CD4+ counts are normal, not all of the CD4+ cells need430

be HIV resistant. A fair percentage of them, in some cases, are susceptible uninfected cells.431

The effectiveness with which HIV resistant CD4+ cells can clear virus from the body, parame-432

terized by β , is not yet known. The choice of this beta affects the percentage of HIV resistant cells433
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that must be produced to achieve a functional cure of HIV, with CD4+ counts returning to normal.434

Figure 8 shows that, in the absence of any such effect (β = 0) over 75% of CD4+ cells that are435

produced must be HIV resistant to give a functional cure. If the effectiveness of virion removal is436

better, a far smaller fraction of HIV resistant cells need be produced.437

5.5 Future Work438

The results of this study inform the experiments that are needed to determine whether the proposed439

HIV treatment will work. The threshold dependence of the model on parameters w and β indicate440

that these are key questions that must be answered by experiment:441

1. Under what conditions is it possible for gene altered hematopoietic progenitor cells to supplant442

a fraction of the existing progenitor cell population? The model assumes this can be done for443

any desired fraction, w.444

2. Will gene edited hematopoietic progenitor cells produce HIV resistant CD4+ cells at the same445

rate as unedited cells? The model currently assumes these rates are the same.446

3. What effect will HIV resistant CD4+ cells will have on the existing HIV infection? Will they447

function as an immune protection by assisting the removal of virus from the body, and to what448

extent?449

In addition, mathematical questions remain. One question concerns the role of latent cells, which450

biologists believe are a major factor in the failure of antiretroviral therapy (Sebastian & Collins451

(2014), Persaud et al. (2000)). For both treated and untreated versions of this model, R0 depends on452

m, the rate at which infected cells become latent. However, the dependency is not strong enough to453

determine whether R0 > 1, a criterion that is shown not to depend on m. With the default parameters454

for this model, the disease free equilibrium is always stable and R0 < 1. But whether R0 > 1, taken455

alone does not determine the size of the basin of attraction for the disease free equilibrium. A456

successful therapy would push the state variables into this basin, the size of which may very well457

depend upon m. To what extent m determines the success of therapy in this way will be part of future458

research.459
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6. Appendix 1460

THEOREM 6.1 The equilibrium values for the system described by Equations (3.1)-(3.5) are given461

as roots of a cubic polynomial in J:462

J(J
2
+ a1J+ a0) = 0 (6.1)

where:463

a1 =
m[kαc− ka(p− 1)+ c(d− b)]

ken(p− 1)

a0 =
cm2α(cd − ka(p− 1))

ke2n2(p− 1)2

COROLLARY 6.1 (Disease-free equilibrium). The model equations (3.1) - (3.5) have a disease-free464

equilibrium E0 = (a/q,a/d,0,0,0). Further the disease-free equilibrium is the only equilibrium if465

p = 1+ cd
ka and b = αk.466

Proof. Since J = 0 is a solution of equation (6.1), it is a straight forward calculation to get associated467

values: R = a
q , T = a

d , I = 0 and V = 0. We call this disease-free equilibrium E0 and write it in468

vector form E0 = (a/q,a/d,0,0,0). In equation (6.1) if a0 = 0,(p = 1+ cd
ka ) and a1 = 0(b = αk)469

then E0 is the only equilibrium point.470

!471

LEMMA 6.1 If p < 1 there is no endemic equilibrium.472

Proof. At equilibrium, Equation (3.5) implies that J = mn−1I. Substituting this into Equation (3.3)473

gives that kTV = eI. Substituting this relation into Equation (3.4) gives V = ec−1(p− 1)−1I. Thus474

if p < 1, one of V, I must be negative or else both are zero. !475

THEOREM 6.2 (Endemic equilibrium)476

The model has either one or two endemic equilibrium points, determined by parameter values as477

follows:478

1. Let p = 1+ cd
ka and b > αk. Then there exists one endemic equilibrium.479

2. Let p > 1+ cd
ka . Then there exists one endemic equilibrium.480

3. Let 1 < p < 1+ cd
ka and αk < b < ak+ d +αk. Then there exists two endemic equilibria E1

3481

and E2
3 .482

4. Above mentioned cases are the only ones giving positive equilibria.483

Proof. The proof follows by examining the roots of the quadratic term in equation (6.1). Based on484

the signs of a0 and a1, we have the following:485

1. If a0 = 0, (p = 1+ cd
ka ) and a1 ̸= 0 (b ̸= αk), there is one endemic equilibrium. If b > αk we486

get J = a1 > 0. Corresponding to this J, call it J∗, we get equilibrium values for other pop-487

ulations which we denote by R∗,T ∗, I∗,V ∗ and hence E1 = (R∗,T ∗, I∗,V ∗,J∗) is the endemic488

equilibrium. If b < αk we get J = a1 < 0 which is not biologically feasible. Additionally we489

get the disease-free equilibrium E0 for these a0, a1 values already dealt with in Theorem 6.1.490

491

If a0 < 0 then p> 1+ cd
ka . Solving for the roots of the quadratic expression in (6.1), we get two492

values of opposite signs for J. Call the positive root J∗2 and evaluating the other populations493

we get an endemic equilibrium point (R∗
2,T

∗
2 ,V

∗
2 , I

∗
2 ,J

∗
2 ) which is different from the previous494

case.495
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2. If 1 < p < 1+ cd
ka and a1 < 0 (which happens when αk < b < ak

c + d + kα), the quadratic496

expression in equation (6.1) gives two positive roots J1
3 ,J

2
3 , which lead to positive values of497

other populations. We denote these two endemic equilibrium points E1
3 = (R1

3,T
1

3 ,V
1
3 , I

1
3 ,J

1
3 )498

and E2
3 = (R2

3,T
2

3 ,V
2
3 , I

2
3 ,J

2
3 ) in addition to E0. The upper bound for b ensures that the virion499

release rate p " 0.500

3. Note that all other combination of values of a1 and a0 will lead to either negative or complex501

population values which are not biologically feasible.502

!503

THEOREM 6.3 (Stability: disease-free equilibrium) The disease-free equilibrium E0 =(a/q,a/d,0,0,0)504

is unstable if p > 1+ cd
ka .505

Proof.506

The Jacobian of the system at any equilibrium point(R∗,T ∗, I∗,V ∗,J∗) is given by:507

Je =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−(q+ uqV ∗

α+V ∗ ) 0 0 − uqR∗α
(α+V ∗)2 0

q+ uqV ∗

α+V ∗ −d −kV ∗+ bV ∗

α+V ∗ 0 −kT ∗+ uqR∗α
(α+V ∗)2 +

bT ∗α
(α+V ∗)2 0

0 kV ∗ −e−m kT ∗ n

0 −kV ∗ ep −c−kT ∗ 0

0 0 m 0 −n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

508

At the disease-free equilibrium R∗ = a/q and T ∗ = a/d with all other quantities equal to 0,509

yielding the following:510

J0 =

⎛

⎜

⎜

⎜

⎜

⎝

−q 0 0 −uaα−1 0

q −d 0 −kad−1 + uaα−1 + ab
αd 0

0 0 −e−m kad−1 n

0 0 ep −c− kad−1 0
0 0 m 0 −n

⎞

⎟

⎟

⎟

⎟

⎠

Clearly two eigenvalues of J0 are −q,−d. The remaining three eigenvalues are given by the511

roots of the cubic polynomial:512

b3λ 3 + b2λ 2 + b1λ + b0 = 0, (6.2)

where

b3 = 1 > 0,

b2 = n+ c+ e+m+
ka

d
> 0,

b1 = n(c+ e+m+
ka

d
)+ (e+m)(c+

ka

d
)− ep

ka

d
−mn

= c(n+m+ e)+ ne+
ka

d
(n+m)+

ka

d
e(1− p)

b0 = n(e+m)(c+
ka

d
)− nm(c+

ka

d
)− ep

ka

d
n

= ne(c+
ka

d
(1− p))
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By the Routh-Hurwitz criterion Murray (2002) all the roots of (6.2) are negative or have negative513

real part if and only if b0 > 0,b2 > 0 and b2b1 > b0. If p > 1+ cd
ka we have b0 < 0 implying that514

there exists an eigenvalue of J0 with a positive real part. Hence E0 is unstable.515

!516

THEOREM 6.4 The basic reproduction number, R0 for the model (3.1)-(3.5) is given by:517

R0 =
m

2(e+m)
+

√

(

m

2(e+m)

)2

+
kaep

(ka+ cd)(e+m)
. (6.3)

Proof. R0 is obtained as the spectral radius of the next generation matrix. The first step in obtaining518

this matrix is to determine the infected subsystem in our model, that is those equations that produce519

new infections, leading to the transmission matrix F , and those that cause changes in state among520

infected individuals, leading to the transition matrix S. These equations are (3.2) - (3.5). We linearize521

this subsystem about the disease-free equilibrium. Details about this method may be viewed in522

Diekmann et al. (2009).523

The transmission matrix F and transition matrix S:

F =

⎛

⎜

⎜

⎝

0 0 0 0

0 0 ka
d n

0 ep 0 0
0 m 0 0

⎞

⎟

⎟

⎠

, S =

⎛

⎜

⎜

⎝

−d 0 −ka
d + ua

α + ab
αd 0

0 −e−m 0 0

0 0 −c− ka
d 0

0 0 0 −n

⎞

⎟

⎟

⎠

.

The next generation matrix is K =−FS−1 and is given by524

K =

⎛

⎜

⎜

⎝

0 0 0 0

0 0 ka
cd+ka −1

0 −ep
e+m 0 0

0 −m
e+m 0 0

⎞

⎟

⎟

⎠

.

The largest eigenvalue of K gives the basic reproduction number:525

R0 =
m

2(e+m)
+

√

(

m

2(e+m)

)2

+
kaep

(ka+ cd)(e+m)
. (6.4)

The main theorem in Diekmann et al guarantees that the disease-free equilibrium E0 is locally526

asymptotically stable if R0 < 1, and unstable if R0 > 1 Diekmann et al. (2009). !527

6.1 Model with HIV-resistant cells528

The full system with HIV resistant cells has equilibria defined by a quartic polynomial. We begin529

the analysis by verifying the root corresponding to the disease-free equilibrium.530

THEOREM 6.5 (Disease-free equilibrium.) The model with HIV resistant cells (equations (2.1)-531

(2.7)), has a disease-free equilibrium given by E ′
0 = ((1−w)a/q,(1−w)a/d,0,0,0,wa/q,wa/d).532

Proof. Assuming that a disease-free equilibrium exists, set I = 0. The remaining values follow by533

simple calculation.534

!535

THEOREM 6.6 (Stability: disease-free equilibrium). The disease-free equilibrium E ′
0 is unstable if536

p > 1+ cd
ka(1−w) +

β w
k(1−w) .537
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Proof.538

The Jacobian of the system at equilibrium (R∗,T ∗, I∗,V ∗,J∗,P∗,Q∗) is given by:539

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(q+ uqV∗

α+V∗ ) 0 0 − uqR∗α
(α+V∗)2

0 0 0

q+ uqV∗

α+V ∗ −d − kV∗+ bV∗
α+V ∗ 0 −kT∗ + uqR∗α

(α+V∗)2
+ bT∗α

(α+V∗)2
0 0 0

0 kV∗ −e−m kT∗ n 0 0
0 −kV∗ ep −c− kT∗ −βQ∗ 0 0 −βV∗

0 0 m 0 −n 0 0

0 0 0 − P∗αuq

(α+V∗)2
0 −

(

q+ uqV
α+V

)

0

0 0 0
P∗αuq

(α+V ∗)2
+ bQ∗α

(α+V ∗)2
0 q+ uqV

α+V
bV∗

α+V∗ −d

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

540

Linearising the system of equations (2.1)-(2.7)) about E ′
0 we get the Jacobian:541

J′0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−q 0 0 − u(1−w)a
α 0 0 0

q −d 0 −(1−w)a( k
d +

u
α + b

αd ) 0 0 0

0 0 −e−m
k(1−w)a

d n 0 0

0 0 ep −c− k(1−w)a
d − β wa

d 0 0 0
0 0 m 0 −n 0 0
0 0 0 − uwa

α 0 −q 0

0 0 0 wa( u
α + b

αd ) 0 q −d

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

542

Clearly four eigenvalues of J′0 are −q,−q,−d,−d. The remaining eigenvalues are given by543

zeros of:544

c3λ 3 + c2λ 2 + c1λ + c0 = 0, (6.5)

where

c3 = 1 > 0,

c2 = n+ e+m+ c+
ka

d
(1−w)+

β wa

d
,

c1 = ne+(n+ e+m)

(

c+
ka

d
(1−w)+

β wa

d

)

−
epka

d
(1−w),

c0 = nec+
neka(1− p)(1−w)

d
+

neβ wa

d

Again by Routh-Hurwitz all the roots of (6.5) are negative or have negative real part if and only545

if c0 > 0,c2 > 0 and c2c1 > c0. We note that if p > 1+ cd
ka(1−w) +

β w
k(1−w) then c0 < 0. This implies546

that there is one eigenvalue of J′0 has a positive real part. Thus the disease-free equilibrium E ′
0 is not547

stable.548

!549

THEOREM 6.7 The basic reproduction number for the model with HIV resistant cells is given by550

RP
0 =

m

2(e+m)
+

√

(

m

2(e+m)

)2

+
kaep(1−w)

(cd+ ka(1−w)+β wa)(e+m)
(6.6)

Proof. As in Theorem 6.4 we use the next generation matrix, using the following relevant subsys-551

tem:552
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İ = (−e−m)I+ k(1−w)ad−1V + nJ

V̇ = epI+(−c−β wad−1− k(1−w)ad−1)V

J̇ = mI − nJ

Q̇ = (uwaα−1 + bwa(αd)−1)V − dQ

The transmission matrix FP and transition matrix SP for this system are

FP =

⎛

⎜

⎜

⎝

0
k(1−w)a

d 0 0
ep 0 0 0
m 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

, SP =

⎛

⎜

⎜

⎝

−e−m 0 n 0

0 c−β wa
d − ka(1−w)

d 0 0
0 0 −n 0

0 uwa
d + bwa

αd 0 −d

⎞

⎟

⎟

⎠

The next generation matrix is defined by KP = −FPS−1
P ( inverse of the matrix SP exists) and is

given by

KP =

⎛

⎜

⎜

⎝

0 ka
d (c+ ka(1−w)

d + β wa
d )−1 0 0

ep
e+m 0 ep

e+m 0
m

e+m 0 m
e+m 0

0 0 0 0

⎞

⎟

⎟

⎠

The largest eigenvalue of KP is the basic reproduction number R0 and is calculated as553

RP
0 =

m

2(e+m)
+

√

(

m

2(e+m)

)2

+
kaep(1−w)

(cd+ ka(1−w)+β wa)(e+m)
(6.7)

The disease-free equilibrium E0 is locally asymptotically stable if RP
0 < 1, but unstable if RP

0 > 1554

Diekmann et al. (2009). !555

An algebra calculation leads to the following observation.556

COROLLARY 6.2 RP
0 < 1 if and only if p < 1+ cd

ka(1−w) +
β w

k(1−w) .557

THEOREM 6.8 The remaining equilibrium values for the system described by Equations (2.1)-(2.7)558

are given as roots of a cubic polynomial in the state space variable Q as follows:559

0 =C3Q3 +C2Q2 +C1Q1 +C0

where560

C3 = (p− 1)−1((−d−αk+ b)αdβ (b− d)− dαβ (b−d)2− kα2d2β ) (6.8)

C2 = α(1−w)ak(b− d)2+(p− 1)−1((−d−αk+ b)α(dβ wa+ dc(b− d)−waβ(b−d))

− dα(p− 1)−1(2β wa(b− d)+ c(b− d)2)

+ (1−w)akαd(b− d)− kα2(p− 1)−1(−2dwaβ + d2c) (6.9)

C1 = α(1−w)ak2(b− d)wa+(p− 1)−1((−d−αk+ b)α(dcwa−w2a2β −wac(b− d))

− (p− 1)−1dα(β w2a2 + c2wa(b− d))

+ (1−w)akα(dwa−wa(b− d))− (p−1)−1kα2(w2a2β − 2dwac) (6.10)

C0 = (p− 1)−1((−d−αk+ b)α(−w2a2c)− dαcw2a2 − kα2w2a2c) (6.11)
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Proof. As the proof is an algebra exercise, we give only a sketch based on equations (2.1)-(2.7)561

taken at equilibrium. Equation 5 expresses J in terms of I. Substituting this into equation (2.3) gives562

TV = ek−1I (6.12)

Summing equations (2.1) and (2.2), replacing TV with ek−1I and clearing the denominator gives563

0 = α(1−w)ak+ Ie(−dα −αk+ b)− dαkT +(1−w)akV − ekIV (6.13)

Replacing TV with ek−1I in equation (2.4) gives an expression for V in terms of I and Q564

V = e(p− 1)I(c+β Q)−1 (6.14)

Summing equations (2.6) and (2.7) and solving for V gives565

V = (dQ−wa)α(wa+(b− d)Q)−1 (6.15)

Comparing the last two equations gives an expression for I in terms of Q, thus of T in terms of Q566

using the equation (6.12). Substituting all of this into equation (6.13) gives an expression in Q alone567

which, when denominators are cleared, leads to the following cubic polynomial with the coefficients568

given.569

0 = α(1−w)ak(wa+(b− d)Q)2+(−de− eαk+ eb)αe−1(p− 1)−1((dQ−wa)(c+β Q)(wa+(b− d)Q)

− dkαk−1(p− 1)−1(c+β Q)(wa+(b− d)Q)2+(1−w)akα(dQ−wa)(wa+(b− d)Q)

− ekα2e−1(p− 1)−1(dQ−wa)2(c+β Q) (6.16)

!570

7. Appendix 2571

Table 1: Default model parameter values as described in text.

Parameter Description Units Values Source

a Source for uninfected rest-
ing CD4+

cells/µ L/day 10.4(±4.8) Fleury et al.
(2000)

q Activation rate of resting
CD4+

day−1 0.01097 calculated
Hunt et al.
(2003)

d Death rate of activated
CD4+

day−1 0.5377 calculated
Hunt et al.
(2003)

c Virus death rate day−1 333
(5-500)

Boer et al.
(2010)

p Number of virions produced
by an infected cells

integer 5× 104 Boer et al.
(2010)

e Death rate of infected cells day−1 1 Boer et al.
(2010)

Continued on next page
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Table 1 – continued from previous page

Parameter Description Units Values Source

b Activation of CD4+ from
activated CD4+ in virus
presence

day−1 0.5 Jelley-Gibbs
et al. (2000)

m Daily rate of infected cells
that become latent

day−1 .000001 arbitrary

n Daily rate of latent cells con-
verting to infected popula-
tion

day−1 106m Chun et al.
(1997)

u Activation of CD4+ from
uninfected resting in virus
presence

constant 10 matched to
dataPerl-
mutter et al.
(1999)

α Saturation speed cells/µL3 1.8 matched to
data Perl-
mutter et al.
(1999)

k Rate constant for CD4+

becoming infected by free
virus

(virions/µL).−1

(day)−1
0.00015 matched to

data Perl-
mutter et al.
(1999)

β Rate constant for HIV re-
sistant CD4+ reducing free
virus

(virions/µL).−1

(day)−1
0 unknown

w percent of HIV resistant
cells produced

none 0 variable

R(0) Initial concentration of un-
activated CD4+ cells

number per µL 948 Fleury et al.
(2000)

T (0) Initial concentration of acti-
vated CD4+ cells

number per µL 19 Hunt et al.
(2003)

I(0) Initial concentration of in-
fected CD4+ cells

number per µL 0.01 arbitrary

V (0) Initial concentration of viri-
ons

number per µL 0 estimated

J(0) Initial concentration of la-
tent CD4+ cells

number per µL 0 estimated

P(0) Initial concentration of HIV
resistant unactivated CD4+
cells

number per µL 0 estimated

Q(0) Initial concentration of HIV
resistant activated CD4+
cells

number per µL 0 estimated



28 of 32 REFERENCES

References572

Adams, A. E., Brumme, Z. L., Rutherford, A. R. & Wittenberg, R. W. (2015), Matching models573

of hiv-1 viral dynamics to clinical data, in ‘Computational Intelligence in Bioinformatics and574

Computational Biology (CIBCB), 2015 IEEE Conference on’, IEEE, pp. 1–8.575

Alshorman, A., Wang, X., Joseph Meyer, M. & Rong, L. (2016), ‘Analysis of hiv models with two576

time delays’, Journal of biological dynamics pp. 1–25.577
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