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Rooted Trees and Self-Similar Actions (Nekrashevych)

o A finite set X, called the alphabet
@ Rooted tree structure of X*, the set of all words

o An automorphism of X* preserves adjacency of vertices
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A finite set X, called the alphabet
Rooted tree structure of X*, the set of all words

An automorphism of X* preserves adjacency of vertices

A self-similar group G is a subgroup of Aut X* that acts on
X* “letter by letter”

o (G contracting if can be represented by a finite Moore
diagram
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Moore Diagrams and Limit Spaces (Nekrashevych)

o Example: Binary adding machine
X={0,1}, a(0) =1, a(1l) =0, G = (a)

(0,0)

(L1

Figure: Binary adding machine
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Moore Diagrams and Limit Spaces (Nekrashevych)

o Example: Binary adding machine
X={0,1}, a(0) =1, a(1l) =0, G = (a)

(0,0)

(1,1)
Figure: Binary adding machine
a(11001) = 0 a(1001)
=00 a(001)
=001 ¢(01)
= 00101

D. J. Kelleher, B. A. Steinhurst, *C.-M. M. Wong From self-similar structures to self-similar groups



Background Information = Wl A
= ¢ Self-Similar Groups/Actions
Self-Similar Structures and P.C.F. Structures

Moore Diagrams and Limit Spaces (Nekrashevych)

o Example: Binary adding machine
X={0,1}, a(0) =1, a(1l) =0, G = (a)

(0,0)

(L1

Figure: Binary adding machine
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Moore Diagrams and Limit Spaces (Nekrashevych)

o Example: Binary adding machine
X={0,1}, a(0) =1, a(1l) =0, G = (a)

(1,0) A (0,1)
(m)@@ (1 0)

(1,1)

Figure: Binary adding machine

o Left-infinite paths define an asymptotic equivalence relation
~G on XY Jo = X%/ ~¢ is the limit space of G
@ Binary adding machine: (read from the right)
01w ~g 10w
Limit space is the circle
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Hanoi Towers Group and Sierpinski Gasket

e Hanoi Towers Group:

(2,2)

(2]
(0,1) (1,0)
(2,1 @ 0,2)
@ 1,2) (2,0 @

(0,0) (1,1)

Figure: Hanoi Towers Group
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Hanoi Towers Group and Sierpinski Gasket

e Hanoi Towers Group: o Limit space: Sierpinski Gasket
(232) A
o1 ]@1,0
@ 0,2) A
1 ) Landibbl
Figure: Hanoi Towers Group Figure: Sierpinski Gakset
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Self-Similar Structures (Kigami)

o F;: K — K continuous injection for each ¢ € X, mapping
K to a smaller part of itself

o A surjection 7 : X™“ — K from the code space X~ to K,
marking the image of F; by 4
o L= (K,X {F;},cx) is a self-similar structure on K

e For a point a € K, 7 !(a) contains the “addresses” of a
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Self-Similar Structures (Kigami)

o F;: K — K continuous injection for each ¢ € X, mapping
K to a smaller part of itself

(]

A surjection 7 : X™% — K from the code space X% to K,
marking the image of F; by 4

L = (K, X, {Fi};cx) is a self-similar structure on K

For a point @ € K, 7~ 1(a) contains the “addresses” of a

(]

(]

Example: Sierpiriski Gasket (Usual Structure)

b,

Figure: Sierpinski Gasket
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Limit Spaces of Self-Similar Groups
Our Results P.C.F. Structures on Limit Spaces
The Inverse Problem

When Does a Limit Space Have a Self-Similar
Structure?
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The Inverse Problem

When Does a Limit Space Have a Self-Similar
Structure?

o A self-similar structure £ = (Jg, X, {Fi};cx) on a limit
space Jg, such that p =7

o Limit space of the binary adding machine, the circle, does
not have a self-similar structure
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The Inverse Problem

When Does a Limit Space Have a Self-Similar
Structure?

o A self-similar structure £ = (Jg, X, {Fi};cx) on a limit
space Jg, such that p =7

o Limit space of the binary adding machine, the circle, does
not have a self-similar structure

Theorem (1)

The limit space Jg has a self-similar structure if and only if it
satisfies the following condition:

For every left-infinite path e = ... ese1 in the nucleus ending at
a non-trivial state and for every w € X*, there exists a
left-infinite path f = ... fof1 in the nucleus ending at a state g,
such that the label of the edge f, is the same as the label of ey,
and g(w) = w.
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Our Results P.C.F. 1ctures on Limit Spaces
The Inverse Problem

When Does a Limit Space Have a P.C.F. Self-Similar
Structure? (Slide I)
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Limit S s of Self-Similar Groups
Our Results P.C.F. St tures on Limit Spaces
The Inverse Problem

When Does a Limit Space Have a P.C.F. Self-Similar
Structure? (Slide I)

o Limit space: finitely ramified in the group-theoretical sense
if the intersection of distinct tiles of the same level is finite
o Self-similar structure:

e finitely ramified in the fractal sense if the intersection of the
images of Fj is finite
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When Does a Limit Space Have a P.C.F. Self-Similar
Structure? (Slide I)

o Limit space: finitely ramified in the group-theoretical sense
if the intersection of distinct tiles of the same level is finite
o Self-similar structure:
e finitely ramified in the fractal sense if the intersection of the
images of Fj is finite
o post-critically finite (p.c.f.) if
@ the set of addresses of the intersection of F; is finite
@ ecach address in this set has a recurring tail

Significance: Can define Laplacian on the space
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The Inverse Problem

When Does a Limit Space Have a P.C.F. Self-Similar
Structure? (Slide I)

o Limit space: finitely ramified in the group-theoretical sense
if the intersection of distinct tiles of the same level is finite
o Self-similar structure:
e finitely ramified in the fractal sense if the intersection of the
images of Fj is finite
o post-critically finite (p.c.f.) if
@ the set of addresses of the intersection of F; is finite
@ ecach address in this set has a recurring tail

Significance: Can define Laplacian on the space
e (Bondarenko and Nekrashevych) A contracting group G is

p.c.f. if there exists a finite number of left-infinite paths in
its nucleus that end at a non-trivial state
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Limit S f Self-Similar Groups
Our Results .C.F. ures on Limit Spaces
Problem

When Does a Limit Space have a P.C.F. Self-Similar

Structure? (Slide II)

Lemma (Bondarenko and Nekrashevych 2003)

The limit space Jg is finitely ramified in the group-theoretical
sense if and only if G is p.c.f.
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Limit S f Self-Similar Groups
Our Results .C.F. ures on Limit Spaces
Problem

When Does a Limit Space have a P.C.F. Self-Similar

Structure? (Slide II)

Lemma (Bondarenko and Nekrashevych 2003)

The limit space Jg is finitely ramified in the group-theoretical
sense if and only if G is p.c.f.

Theorem (2)

The self-similar structure £ = (Ja, X, {Fi};cx) on the limit
space Ja of a contracting G is p.c.f. if and only if G is p.c.f.
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The Ir roblem

When Does a Limit Space have a P.C.F. Self-Similar

Structure? (Slide II)

Lemma (Bondarenko and Nekrashevych 2003)

The limit space Jg is finitely ramified in the group-theoretical
sense if and only if G is p.c.f.

Theorem (2)

The self-similar structure £ = (Ja, X, {Fi};cx) on the limit
space Ja of a contracting G is p.c.f. if and only if G is p.c.f.

o Point 1: Finitely ramified in the group-theoretical sense is
the same as in the fractal sense when 7z has a self-similar
structure

e Point 2: Justifies use of the term “p.c.f. group”
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When Does a Limit Space have a P.C.F. Self-Similar
Structure? (Slide III)

A limit space Jg has a p.c.f. self-similar structure if and only if
G satisfies the condition in Theorem (1) and is p.c.f.
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The In Problem

When Does a Limit Space have a P.C.F. Self-Similar
Structure? (Slide III)

A limit space Jg has a p.c.f. self-similar structure if and only if
G satisfies the condition in Theorem (1) and is p.c.f.

The self-similar structure on a limit space is p.c.f. if and only if
it 1s finitely ramified.

o Example: The Kameyama fractal is not a limit space.
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The Inverse Problem

Motivation

@ A contracting group produces a limit space, which may
have a self-similar structure

o Question: Given a self-similar structure, can we find a
contracting group that produces a limit space with this
structure? When?

o Focus: P.c.f. self-similar structures
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Motivation

A contracting group produces a limit space, which may
have a self-similar structure

o Question: Given a self-similar structure, can we find a
contracting group that produces a limit space with this
structure? When?

o Focus: P.c.f. self-similar structures

e Necessary condition: If 7(...x9z1) = 7(...y2y1), then
(o Tpp1Tn) = (... Yn+1yn) for all n

o Equivalently: the induced shift map s : Jo — Jg defined by
s= Fi_1 for each image of F;, exists and is continuous

Why? It has to be a limit space!
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Construction (Slide I)

o For a p.c.f. self-similar structure £ satisfying the necessary
condition, (... xex1) = (... y2y1) implies that

Q 7(...wpi17n) = (.. Yny1yn) for all n € ZT
Q 7(...xoww) =7(...y211) for all w € X*
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Construction (Slide I)

o For a p.c.f. self-similar structure £ satisfying the necessary
condition, (... xex1) = (... y2y1) implies that
Q 7(...wpi17n) = (.. Yny1yn) for all n € ZT
Q 7(...xoww) =7(...y211) for all w € X*
o Write down the “equivalence classes” induced by £
systematically:
e By (1) and (2), 7(...zyt12Nyw) = 7(. .. yn1yNw) Where
TN # yn, which accounts for the original equation.
Therefore, assume x1 # y;.
o Then ...zoz1,...y2y1 € C. C is finite, so there are only
finitely many such equations.
o L p.c.f. implies that elements in C have a recurring tail, so
we can write 7(Zx, . .. Tox1w) = T(ZYp - . . Yoy1w). Also,
2k # Ty OF Ypn, and z is the shortest recurring word.
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Construction (Slide II)

o Write down the “equivalence classes” induced by £
systematically (continued):

e By (2) and induction, if
m(Zxy, ... xox1w) = 7(ZYp - . . Yy2y1w), then
(2 . .. 26 w) = T(Zxy, . .. x2xw) whenever &; € {z;,y;}
for all j.

o Therefore, we can write all equivalence classes in the form

{Egn S GQw | Z,W € X*7Cj € S]}
for fixed W, z € X* and some S; € X; we introduce a
shorthand to denote this:
ESn e SgSlw.
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Construction (Slide II)

o Write down the “equivalence classes” induced by £
systematically (continued):
e By (2) and induction, if
m(Zxy, ... xox1w) = 7(ZYp - . . Yy2y1w), then
(2 . .. 26 w) = T(Zxy, . .. x2xw) whenever &; € {z;,y;}
for all j.
o Therefore, we can write all equivalence classes in the form
{Egn S GQw | Z,W € X*7Cj € S]}
for fixed W, z € X* and some S; € X; we introduce a
shorthand to denote this:
ESn e SgSlw.
o Notice that each equivalence class is determined by
ZS, ... 8951 = 7r_1(a)
for some « € w(C), where |S1| > 1. We use « to label
ZSn ... 5257.
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Construction (Slide III)

e For each Z9,, ... 5251 = 7 1(a), we define some generators:

(ZZaZ‘z)/ZLZl)
; () (D (D
(i, 05, (1)) (1,05, (i) \_ (i, 7, (1))
(2k—1, 2k-1) @

(21 2k)
Figure: The generators corresponding to o = W(zZS,, ... S2S1w)
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Limit Spaces of Self 1ilar Groups
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The Inverse Problem

Construction (Slide III)

e For each Z9,, ... 5251 = 7 1(a), we define some generators:

(ZZaZ‘z)/ZLZl)
; () (D (D
(i, 05, (1)) (1,05, (i) \_ (i, 7, (1))
(2k—1, 2k-1) @

(21 2k)
Figure: The generators corresponding to o = W(zZS,, ... S2S1w)

@ The desired group G, is the group generated by all the
generators defined above for all a € 7(C)
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Our Results

Construction (Slide III)

e For each Z9,, ... 5251 = 7 1(a), we define some generators:

(ZZaZ‘z)/ZLZl)
; — ) (DD
(i, 05, (1)) (1,05, (i) \_ (i, 7, (1))
(Zklazkl (21 2k)

Figure: The generators corresponding to o = W(zZS,, ... S2S1w)

@ The desired group G, is the group generated by all the
generators defined above for all a € 7(C)

G produces a self-similar structure L' that is isomorphic to L.
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Example: Unit Interval

o For the usual self-similar structure, the induced shift map s
does not exist!
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Problem

Example: Unit Interval

o For the usual self-similar structure, the induced shift map s

does not exist!
o A twisted structure:

I=10,1]
Fo(x)=—(1/2)x +1/2, Fi(x) = (1/2)z + 1/2
o All equivalence classes determined by the equivalence class
71'_1(1/2) = TSQSI,
where Sy = {0} and Sy = {0,1}, i.e. 100w ~ 101w.
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Example: Unit Interval

o For the usual self-similar structure, the induced shift map s

does not exist!
o A twisted structure:

I=10,1]
Fo(x)=—(1/2)x +1/2, Fi(x) = (1/2)z + 1/2
o All equivalence classes determined by the equivalence class
71'_1(1/2) = TSQSI,

where Sy = {0} and Sy = {0,1}, i.e. 100w ~ 101w.

o We define the group as follows:

(0,1)
il C@ﬁ’@i{:)@

Figure: The generators of G,
o Compare with the Grigorchuk group
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000 100 120 220 221 021 011 111

Figure: Sierpiniski Gasket (Twisted Structure)
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Example: Sierpinski Gasket

000 100 120 220 221 021 011 111

Figure: Sierpiniski Gasket (Twisted Structure)

@ s does not exist for usual structure; need a “twisted”
structure
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Example: Sierpinski Gasket

000 100 120 220 221 021 011 111

Figure: Sierpiniski Gasket (Twisted Structure)

@ s does not exist for usual structure; need a “twisted”
structure

o Construction by our method: Yields Hanoi Towers Group!
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Figure: Pentakun
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Example: Pentakun

Figure: Pentakun

@ s does exist, so our construction yields a group
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Figure: Snowflake
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The Invi Problem

Example: Snowflake

Figure: Snowflake

@ s does not exist, so not possible to find a group
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Summary

o

o We clarified the condition for a limit space to have a
self-similar structure.

e We clarified the condition for a self-similar structure on a
limit space to be p.c.f.

@ We constructed a contracting group that produces a given
p.c.f. self-similar structure, and determined the necessary
and sufficient condition for this inverse problem to have a
solution.
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Summary

Summary

o

o We clarified the condition for a limit space to have a
self-similar structure.

We clarified the condition for a self-similar structure on a
limit space to be p.c.f.

We constructed a contracting group that produces a given
p.c.f. self-similar structure, and determined the necessary
and sufficient condition for this inverse problem to have a
solution.

Outlook:

o The inverse problem for non-p.c.f. self-similar structures
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