Ribbon homology cobordisms

Aliakbar Daemi¹ Tye Lidman² David Shea Vela-Vick³ *C.-M. Michael Wong³

> ¹Department of Mathematics and Statistics Washington University in St. Louis

> > ²Department of Mathematics North Carolina State University

³Department of Mathematics Louisiana State University

Tech Topology Conference 2019

• For compact 3-manifolds Y_{-} and Y_{+} (with same ∂), a *cobordism*

$$W \colon Y_{-} \to Y_{+}$$

is made up of 1-, 2-, and 3-handles

- *Ribbon*: does not have 3-handles
- Natural examples: Stein cobordisms between contact 3-manifolds

• Ans: Related to *ribbon concordances* of knots in S^3 , which are concordances with 0- and 1-handles, but no 2-handles

Observation

If $C \colon K_{-} \to K_{+}$ is a ribbon concordance, then the exterior

•
$$Y_{\pm} := S^3 \setminus K_{\pm}$$

•
$$W := (S^3 \times [0,1]) \setminus C$$

gives a ribbon homology cobordism $W: Y_{-} \rightarrow Y_{+}$.

• Here, homology cobordism means that the maps

$$H_*(Y_-) \to H_*(W) \leftarrow H_*(Y_+)$$

induced by inclusion are isomorphisms.

• W, like C, has no topology in interior (detected by homology)

Fundamental groups

•
$$Y_{\pm} = S^3 \setminus K_{\pm}$$
, $W = (S^3 \times [0,1]) \setminus C$

Theorem (Gordon 1981) If $C: K_- \to K_+$ is a ribbon concordance, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

Proof.

Uses the residual finiteness of knot groups $\pi_1(Y_{\pm})$.

Observation

Geometrization (Perelman 2006) implies residual finiteness for closed 3-manifold groups.

Theorem (Gordon 1981) If $W: Y_- \to Y_+$ is a ribbon homology cobordism, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

- Roughly: $\pi_1(Y_-)$ is "no bigger" than $\pi_1(Y_+)$
- How can we use this?

Observation

 $\pi_1(Y)$ determines the Thurston geometry of Y (if it has one).

Theorem (Daemi–Lidman–Vela-Vick–W.)

If $W \colon Y_- \to Y_+$ is a ribbon homology cobordism, then

• The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.

Ribbon homology cobordisms and Thurston geometries

Theorem (Daemi–Lidman–Vela-Vick–W.)

If $W \colon Y_- \to Y_+$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- How else can we squeeze information from π_1 ?
- Idea: Representations of $\pi_1(Y_{\pm})$

```
Theorem (Daemi-Lidman-Vela-Vick-W.)
```

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊, for a compact Lie group *G*.
- Any specific G? For example, SU(2)
- Next idea: The SU(2)-representations of $\pi_1(Y)$ are related to the instanton Floer homology $I^{\sharp}(Y)$

Theorem (Daemi-Lidman-Vela-Vick-W.)

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊.
- $I^{\sharp}(W) \colon I^{\sharp}(Y_{-}) \to I^{\sharp}(Y_{+})$ is injective.
- Note: Conjecturally, $I^{\sharp}(Y) \cong \widehat{HF}(Y)$ (Heegaard Floer)
- Next idea: Similarly for Heegaard Floer homology!

Theorem (Daemi-Lidman-Vela-Vick-W.)

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊.
- $I^{\sharp}(W) \colon I^{\sharp}(Y_{-}) \to I^{\sharp}(Y_{+})$ is injective.
- $\widehat{F}_W \colon \widehat{\operatorname{HF}}(Y_-) \to \widehat{\operatorname{HF}}(Y_+)$ is injective.

Sketch of proof for Floer homologies

• Doubling trick:

 $\begin{array}{lll} \mbox{Attaching } S^1 \times D^3 & \rightsquigarrow & X := (Y_- \times [0,1]) \ \sharp \left(S^1 \times S^3\right) \\ \mbox{Attaching } D^2 \times S^2 & \rightsquigarrow & D(W) := W \cup_{Y_+} (-W) \end{array}$

Theorem (Daemi-Lidman-Vela-Vick-W.)

Suppose that Y is a Seifert fibered homology sphere, K is a null-homotopic knot in Y, and $Y_0(K) \cong N \not\equiv (S^1 \times S^2)$. Then $N \cong Y$.

Proof.

Idea: A natural ribbon homology cobordism from N to Y.

Thank you!

 $\begin{array}{lll} \mbox{Attaching } S^1 \times D^3 & \rightsquigarrow & X := (Y_- \times [0,1]) \mbox{ \sharp} (S^1 \times S^3) \\ \mbox{Attaching } D^2 \times S^2 & \rightsquigarrow & D(W) := W \cup_{Y_+} (-W) \end{array}$