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Ribbon cobordisms

For compact 3-manifolds Y− and Y+ (with same ∂), a
cobordism

W : Y− → Y+

is made up of 1-, 2-, and 3-handles
Ribbon: does not have 3-handles
Natural examples: Stein cobordisms between contact
3-manifolds



Why “ribbon”?

Ans: Related to ribbon concordances of knots in S3, which
are concordances with 0- and 1-handles, but no 2-handles

Observation
If C : K− → K+ is a ribbon concordance, then the exterior

Y± := S3 \K±

W := (S3 × [0, 1]) \ C
gives a ribbon homology cobordism W : Y− → Y+.

Here, homology cobordism means that the maps
H∗(Y−)→ H∗(W )← H∗(Y+)

induced by inclusion are isomorphisms.
W , like C, has no topology in interior (detected by homology)



Fundamental groups

Y± = S3 \K±, W = (S3 × [0, 1]) \ C

Theorem (Gordon 1981)
If C : K− → K+ is a ribbon concordance, then

π1(Y−) ↪→ π1(W )� π1(Y+).

Proof.
Uses the residual finiteness of knot groups π1(Y±).



Several decades later...

Observation
Geometrization (Perelman 2006) implies residual finiteness for
closed 3-manifold groups.

Theorem (Gordon 1981)
If W : Y− → Y+ is a ribbon homology cobordism, then

π1(Y−) ↪→ π1(W )� π1(Y+).

Roughly: π1(Y−) is “no bigger” than π1(Y+)
How can we use this?



Main results

Observation
π1(Y ) determines the Thurston geometry of Y (if it has one).

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.



Ribbon homology cobordisms and Thurston geometries



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.

How else can we squeeze information from π1?
Idea: Representations of π1(Y±)



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
The dimension of the G-representation variety of Y− is at
most that of Y+, for a compact Lie group G.

Any specific G? For example, SU(2)
Next idea: The SU(2)-representations of π1(Y ) are related to
the instanton Floer homology I](Y )



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
The dimension of the G-representation variety of Y− is at
most that of Y+.
I](W ) : I](Y−)→ I](Y+) is injective.

Note: Conjecturally, I](Y ) ∼= ĤF(Y ) (Heegaard Floer)
Next idea: Similarly for Heegaard Floer homology!



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
The dimension of the G-representation variety of Y− is at
most that of Y+.
I](W ) : I](Y−)→ I](Y+) is injective.
F̂W : ĤF(Y−)→ ĤF(Y+) is injective.



Sketch of proof for Floer homologies

Doubling trick:

Attaching S1 ×D3  X := (Y− × [0, 1]) ] (S1 × S3)
Attaching D2 × S2  D(W ) := W ∪Y+ (−W )



Application to Dehn surgery

Theorem (Daemi–Lidman–Vela-Vick–W.)
Suppose that Y is a Seifert fibered homology sphere, K is a
null-homotopic knot in Y , and Y0(K) ∼= N ] (S1 × S2). Then
N ∼= Y .

Proof.
Idea: A natural ribbon homology cobordism from N to Y .



Thank you!

Attaching S1 ×D3  X := (Y− × [0, 1]) ] (S1 × S3)
Attaching D2 × S2  D(W ) := W ∪Y+ (−W )


