Math 3 Winter 2004
Introduction to Calculus
Class Demo for the Implicit Differentiation
January 23, 2004
| > | with(plots): |
Warning, the name changecoords has been redefined
Plotting implicity defined functions is not easy
| > | f := (x, y) -> x^2 + y^2: |
| > | implicitplot(f = 25, -5 .. 5, -5 .. 5); |
![[Plot]](Math3-S2-images/Math3-S2-Demo6_implicitDiff_1.gif)
Descartes's Folium
| > | f := (x, y) -> x^3 + y^3 - 6*x*y; |
| > | implicitplot(f = 0, -5 .. 5, -5 .. 5, thickness = 2); |
![[Plot]](Math3-S2-images/Math3-S2-Demo6_implicitDiff_3.gif)
Tangent line at (3, 3) is
Tangent line at (4/3, 8/3) is
Tangent line at (2^(4/3), 2^(5/3)) is
| > | display(implicitplot(f = 0, -6..6, -6..6, thickness = 2, grid = [50, 50]), plot({6 - x, 4*x/5 + 8/5, 2^(5/3)}, x = -6..6, y = -6..6, color=blue)); |
![[Plot]](Math3-S2-images/Math3-S2-Demo6_implicitDiff_7.gif)
Tougher example
| > | f := (x, y) -> 2*y^3 + y^2 - y^5 - x^4 + 2*x^3 - x^2; |
| > | implicitplot(f = 0, -1..2, -2..2, thickness = 2, grid = [70, 70]); |
![[Plot]](Math3-S2-images/Math3-S2-Demo6_implicitDiff_9.gif)
Look more carefully
| > | implicitplot(f = 0, -0.5..1.5, 1.5..1.7, thickness = 2, grid = [50, 50]); |
![[Plot]](Math3-S2-images/Math3-S2-Demo6_implicitDiff_10.gif)
| > |