Lecture Plans

Introduction

  • Day 01: Introduction to PDEs (1.1)
  • Day 02: PDE modeling (1.2, 1.3)
  • Day 03: Review of ODEs, series solutions (Chapter 5 of Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems 10th ed.)

Classification of PDEs

  • Day 04: First-order equations (1.2)
  • Day 05: Initial and boundary conditions, well-posed problems (1.4, 1.5)
  • Day 06: Types of second-order equations (1.6)

Wave Equations

  • Day 07: Vibrations of a drum (1.3, 2.1)
  • Day 08: Causality and energy (2.2)
  • Day 09: Reflections of waves (3.2), waves with a source (3.4)

Diffusion Equations

  • Day 10: Diffusion on the whole line (2.3, 2.4)
  • Day 11: Diffusion on the half-line (3.1),
  • Day 12: Diffusion with a source (3.3)

Boundary Value Problems

  • Day 13: Separation of variables, boundary conditions (4.1)
  • Day 14: Fourier transforms - orthogonality and completeness (5.1, 5.3, 5.4)
  • Day 15: Laplace’s equation, Poisson’s equation (6.1, 6.2, 6.3)

Eigenvalue Problems

  • Day 16: Computation of eigenvalues (11.2, 11.3)
  • Day 17: Symmetric differential operators (11.4)
  • Day 18: Asymptotics of eigenvalues (11.6)

Distributions and Weak Formulation

  • Day 19: Weak solutions, FEM (8.5)
  • Day 20: Distributions (12.1, 12.2)
  • Day 21: Green’s functions (7.1, 7.2, 7.3)

Function Spaces

  • Day 22: Hilbert space
  • Day 23: Lax-Milgram theorem
  • Day 24: Banach space

Abstract Formulation

  • Day 25: Second-order elliptic equations
  • Day 26: Second-order linear evolution equations
  • Day 27: Semigroup theory

Review

  • Day 28: Review