show/hide visualization coordinates
a : (-0.82044928260625, 0.43968919795000017, 0.3869532990187501)
b : (-1.72133244760625, 0.11763154795000008, 0.0931130696187501)
c : (-1.64002943090625, 0.6988801576500002, 0.90014333051875)
d : (-0.7366718762062501, 0.9309770809500001, 1.25532084221875)
e : (0.07924297139374997, 0.5830368231500002, 0.79790147531875)
f : (0.002609761893749951, 0.10804865445000011, -0.07932147938124995)
g : (-0.89818696470625, -0.2307470769499999, -0.35070085018124997)
h : (-0.82515268450625, 0.26367050835000017, 0.5149435586187501)
i : (-0.002605491406250049, -0.1061874982499999, 0.07793709841875007)
j : (0.89822910119375, 0.23649890065000012, 0.3465771257187501)
k : (0.82487343899375, -0.2643700848499999, -0.51571204588125)
l : (-0.07917934400625004, -0.5846359926499999, -0.79685752798125)
m : (0.82075307789375, -0.4385516532499999, -0.38641897498124994)
n : (1.7215714636937498, -0.1084484545499999, -0.09975864428124992)
o : (1.6398575905937498, -0.7032988085499998, -0.89695920758125)
p : (0.7364701162937499, -0.94219330205, -1.2471610691812498)
show/hide computer existence proof (failed)
(see shape-existence, preprint)
Attempting to prove existence
Starting realization:
Abstract data:
mode: maximal_simplices
data: [['p', 'o', 'm'], ['k', 'p', 'l'], ['d', 'a', 'e'], ['a', 'g', 'b'], ['f', 'g', 'l'], ['a', 'c', 'b'], ['k', 'f', 'j'], ['a', 'f', 'g'], ['d', 'c', 'h'], ['o', 'm', 'n'], ['k', 'o', 'p'], ['j', 'e', 'i'], ['p', 'm', 'l'], ['e', 'h', 'i'], ['j', 'm', 'i'], ['k', 'j', 'n'], ['g', 'l', 'i'], ['m', 'l', 'i'], ['d', 'a', 'c'], ['b', 'g', 'h'], ['d', 'e', 'h'], ['a', 'e', 'f'], ['j', 'm', 'n'], ['b', 'h', 'c'], ['j', 'e', 'f'], ['k', 'f', 'l'], ['k', 'o', 'n'], ['g', 'h', 'i']]
Coordinate Data:
n : [5347207083 / 2500000000, 4217315711 / 10000000000, 3753804761 / 10000000000]
j : [13155404707 / 10000000000, 7666789263 / 10000000000, 8217162461 / 10000000000]
o : [20571689601 / 10000000000, -1731187829 / 10000000000, -527275109 / 1250000000]
p : [5768907429 / 5000000000, -1030033191 / 2500000000, -241256859 / 312500000]
k : [2484369617 / 2000000000, 166131213 / 625000000, -81145851 / 2000000000]
e : [4965543409 / 10000000000, 1391521061 / 1250000000, 12730405957 / 10000000000]
g : [-300547247 / 625000000, 2994329487 / 10000000000, 622191351 / 5000000000]
b : [-13040210781 / 10000000000, 809764467 / 1250000000, 56825219 / 100000000]
l : [676264051 / 2000000000, -54455967 / 1000000000, -804296019 / 2500000000]
m : [6190322237 / 5000000000, 229070931 / 2500000000, 443600727 / 5000000000]
d : [-3193605067 / 10000000000, 7305785533 / 5000000000, 8652299813 / 5000000000]
c : [-6113590307 / 5000000000, 12290601833 / 10000000000, 13752824509 / 10000000000]
a : [-4031379131 / 10000000000, 2424673059 / 2500000000, 4310462097 / 5000000000]
i : [4147058781 / 10000000000, 2119962637 / 5000000000, 1382690547 / 2500000000]
h : [-81568263 / 200000000, 396925267 / 500000000, 990082679 / 1000000000]
f : [2099605657 / 5000000000, 6382286801 / 10000000000, 395817641 / 1000000000]
Desired square lengths:
default : 1
Checking inequality 1:
d = 3
|V| = 16
|E| = 42
Success: d|V| >= |E|
Checking self-intersection:
Square collision distance = 34692611397799214662811397982434584078205530942738330448129 / 773348372268139772224285472084925929770100000000000000000000
Collision distance in [21180241 / 100000000, 10590121 / 50000000] ~ [0.2118, 0.2118]
Success: starting realization non-self-intersecting
Checking inequality 2:
sigma_min in [1237 / 10000, 1239 / 10000] ~ [0.1237, 0.1239]
Success: sigma_min > 0
Checking inequality 3:
rho_squared = 16526397842037149329028046589867493 / 50000000000000000000000000000000000000
rho in [909021 / 50000000, 1818043 / 100000000] ~ [0.01818, 0.01818]
sigma_min ^ 2 / (16 * E ^ .5) in [1530169 / 10369185120, 1535121 / 10369185104] ~ [0.00015, 0.00015]
Failed: unable to verify rho < sigma_min ^ 2 / (16 * E ^ .5)