22 vertices

bcdefg aghijc abjkld aclme admnof aeonpg afphb bgpqri bhrskj bikc cjistl cktumd dluvne emvpfo enf fnvqhg hpvusr hqsi irqutk ksul ltsqvm muqpn

show/hide visualization coordinates

a : (0.22727272727272727, 0.7085662394599952, -0.11134044285378075)
b : (-0.2727272727272727, 0.41989110486518233, -0.9278370237815068)
c : (-0.7727272727272727, 0.7085662394599952, -0.11134044285378075)
d : (-0.2727272727272727, 0.9972413740548081, 0.7051561380739453)
e : (0.7272727272727273, 0.9972413740548081, 0.7051561380739453)
f : (1.2272727272727273, 0.7085662394599952, -0.11134044285378075)
g : (0.7272727272727273, 0.41989110486518233, -0.9278370237815068)
h : (0.22727272727272727, -0.44613429891925627, -0.9278370237815068)
i : (-0.7727272727272727, -0.44613429891925627, -0.9278370237815068)
j : (-1.2727272727272727, 0.41989110486518233, -0.9278370237815068)
k : (-1.2727272727272727, -0.15745916432444337, -0.11134044285378075)
l : (-0.7727272727272727, 0.1312159702703695, 0.7051561380739453)
m : (0.22727272727272727, 0.1312159702703695, 0.7051561380739453)
n : (1.2272727272727273, 0.1312159702703695, 0.7051561380739453)
o : (1.7272727272727273, 0.9972413740548081, 0.7051561380739453)
p : (0.7272727272727273, -0.15745916432444337, -0.11134044285378075)
q : (0.22727272727272727, -1.023484568108882, -0.11134044285378075)
r : (-0.2727272727272727, -1.3121597027036949, -0.9278370237815068)
s : (-0.7727272727272727, -1.023484568108882, -0.11134044285378075)
t : (-1.2727272727272727, -0.7348094335140691, 0.7051561380739453)
u : (-0.2727272727272727, -0.7348094335140691, 0.7051561380739453)
v : (0.7272727272727273, -0.7348094335140691, 0.7051561380739453)
			
show/hide manual existence proof

This is a subdivision of 7_5.
			
show/hide computer existence proof (failed) (see shape-existence, preprint)

Attempting to prove existence

Starting realization:
	Abstract data:	
		mode: maximal_simplices
		data: [['n', 'm', 'v'], ['d', 'a', 'e'], ['a', 'g', 'f'], ['b', 'i', 'h'], ['g', 'p', 'f'], ['r', 's', 'i'], ['l', 't', 'u'], ['s', 'i', 'k'], ['q', 's', 'u'], ['l', 't', 'k'], ['r', 'q', 's'], ['d', 'm', 'e'], ['m', 'l', 'u'], ['h', 'g', 'p'], ['d', 'a', 'c'], ['j', 'c', 'k'], ['h', 'r', 'q'], ['b', 'g', 'h'], ['b', 'a', 'c'], ['m', 'v', 'u'], ['a', 'e', 'f'], ['h', 'r', 'i'], ['d', 'l', 'c'], ['h', 'q', 'p'], ['s', 't', 'u'], ['n', 'o', 'f'], ['b', 'a', 'g'], ['d', 'm', 'l'], ['n', 'm', 'e'], ['v', 'q', 'u'], ['b', 'j', 'i'], ['s', 't', 'k'], ['b', 'j', 'c'], ['j', 'i', 'k'], ['o', 'e', 'f'], ['l', 'c', 'k'], ['n', 'p', 'v'], ['n', 'p', 'f'], ['v', 'q', 'p'], ['n', 'o', 'e']]
	Coordinate Data:
		m : [-1231561793445383456685147801911 / 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -7110425329693504221476591546221 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -3370976131501720128114652047129 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		s : [-15624999999999999999999999991 / 15625000000000000000000000000, -1154700538379251529018297560671 / 1000000000000000000000000000000, -40824829046386301636621401339 / 50000000000000000000000000000]
		b : [-499999999999999999999999998849 / 1000000000000000000000000000000, 57735026918962576450914878183 / 200000000000000000000000000000, -1632993161855452065464856050743 / 1000000000000000000000000000000]
		h : [143821936157670936971449591293 / 125000000000000000000000000000000000000000000000000000000, -577350269189625764509148779837 / 1000000000000000000000000000000, -1632993161855452065464856050743 / 1000000000000000000000000000000]
		p : [250000000000000000000000000571 / 500000000000000000000000000000, -144337567297406441127287195123 / 500000000000000000000000000000, -816496580927726032732428025603 / 1000000000000000000000000000000]
		r : [-499999999999999999999999998849 / 1000000000000000000000000000000, -144337567297406441127287195059 / 100000000000000000000000000000, -1632993161855452065464856051447 / 1000000000000000000000000000000]
		o : [3 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 7045807148108640903242205017333 / 10000000000000000000000000000000000000000000000000000000000]
		u : [-1 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, -1409161429621728180648441003467 / 1000000000000000000000000000000000000000000000000000000000]
		g : [10000000000000000000000000023 / 20000000000000000000000000000, 57735026918962576450914878183 / 200000000000000000000000000000, -816496580927726032732428025019 / 500000000000000000000000000000]
		d : [-1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, -1761451787027160225810551254333 / 2500000000000000000000000000000000000000000000000000000000]
		a : [2876438723153418739428991825859 / 5000000000000000000000000000000000000000000000000000000000, 18042195912175805140910899421 / 31250000000000000000000000000, -816496580927726032732428025597 / 1000000000000000000000000000000]
		l : [-1, -7903424321292414847203418490607 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -1409161429621728180648441003467 / 1000000000000000000000000000000000000000000000000000000000]
		e : [1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 3094624026350018346419470772727 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		k : [-23437499999999999999999999991 / 15625000000000000000000000000, -144337567297406441127287194959 / 500000000000000000000000000000, -40824829046386301636621401339 / 50000000000000000000000000000]
		i : [-999999999999999999999999998849 / 1000000000000000000000000000000, -577350269189625764509148779837 / 1000000000000000000000000000000, -1632993161855452065464856051447 / 1000000000000000000000000000000]
		t : [-3 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, -1056871072216296135486330752601 / 500000000000000000000000000000000000000000000000000000000]
		c : [-15624999999999999999999999991 / 15625000000000000000000000000, 288675134594812882254574390417 / 500000000000000000000000000000, -204124145231931508183107006519 / 250000000000000000000000000000]
		n : [1, 7901276507619869045286917804557 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 88036115637182082558289928349 / 5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		q : [5752877446306837478857983651709 / 10000000000000000000000000000000000000000000000000000000000, -1154700538379251529018297560671 / 1000000000000000000000000000000, -204124145231931508183107006519 / 250000000000000000000000000000]
		j : [-1499999999999999999999999998849 / 1000000000000000000000000000000, 57735026918962576450914878183 / 200000000000000000000000000000, -1632993161855452065464856051447 / 1000000000000000000000000000000]
		v : [1 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, -1761451787027160225810551254337 / 2500000000000000000000000000000000000000000000000000000000]
		f : [40000000000000000000000000023 / 40000000000000000000000000000, 288675134594812882254574390417 / 500000000000000000000000000000, -816496580927726032732428024667 / 1000000000000000000000000000000]

Desired square lengths:
	default : 1

Checking inequality 1:
	 d  = 3
	|V| = 22
	|E| = 60
	Success: d|V| >= |E|

Checking self-intersection:
	Square collision distance = 31231631379493306878106359726200413834683708721560882482130868987386582144210008233219114756537856588945870993868414081 / 62477479977437816125316043475646948429790075229960720262868146511495907496450291875000000000000000000000000000000000000
	Collision distance in [44189145180458704233279488459 / 62500000000000000000000000000, 141405264577467853546494363069 / 200000000000000000000000000000] ~ [0.70703, 0.70703]
	Success: starting realization non-self-intersecting

Checking inequality 2:
	sigma_min in [0, 1 / 5000] ~ [0.0, 0.0002]
	Failed: sigma_min not positive