22 vertices

bcdefg aghic abijkd acklme admnf aenopg afpohb bgoqri bhrsjc cisk cjstld dktm dltune emuqof fnqhgp fog honur hquvsi irvtkj ksvuml mtvrqn ruts

show/hide visualization coordinates

a : (-0.2272727272727273, -0.7085662394599952, -0.11134044285378075)
b : (-0.7272727272727273, -0.41989110486518233, -0.9278370237815068)
c : (0.2727272727272727, -0.41989110486518233, -0.9278370237815068)
d : (0.7727272727272727, -0.7085662394599952, -0.11134044285378075)
e : (0.2727272727272727, -0.9972413740548081, 0.7051561380739453)
f : (-0.7272727272727273, -0.9972413740548081, 0.7051561380739453)
g : (-1.2272727272727273, -0.7085662394599952, -0.11134044285378075)
h : (-0.7272727272727273, 0.15745916432444337, -0.11134044285378075)
i : (-0.2272727272727273, 0.44613429891925627, -0.9278370237815068)
j : (0.6060606060606061, 0.3499092540543186, -1.4721680777333241)
k : (1.106060606060606, 0.06123411945950577, -0.6556714968055981)
l : (1.606060606060606, -0.22744101513530712, 0.16082508412212793)
m : (0.7727272727272727, -0.1312159702703695, 0.7051561380739453)
n : (-0.2272727272727273, -0.1312159702703695, 0.7051561380739453)
o : (-1.2272727272727273, -0.1312159702703695, 0.7051561380739453)
p : (-1.7272727272727273, -0.9972413740548081, 0.7051561380739453)
q : (-0.7272727272727273, 0.7348094335140691, 0.7051561380739453)
r : (-0.2272727272727273, 1.023484568108882, -0.11134044285378075)
s : (0.6060606060606061, 0.9272595232439445, -0.6556714968055981)
t : (1.106060606060606, 0.6385843886491316, 0.16082508412212793)
u : (0.2727272727272727, 0.7348094335140691, 0.7051561380739453)
v : (0.6060606060606061, 1.5046097924335702, 0.16082508412212793)
			
show/hide manual existence proof

This is shape 13_74 stacked on a truncated subdivided tetrahedron.
			
show/hide computer existence proof (failed) (see shape-existence, preprint)

Attempting to prove existence

Starting realization:
	Abstract data:	
		mode: maximal_simplices
		data: [['d', 'a', 'e'], ['n', 'q', 'u'], ['a', 'g', 'f'], ['b', 'i', 'h'], ['d', 'c', 'k'], ['d', 'l', 'k'], ['g', 'p', 'f'], ['r', 's', 'i'], ['v', 't', 'u'], ['v', 's', 't'], ['l', 't', 'k'], ['n', 'e', 'f'], ['d', 'm', 'e'], ['j', 's', 'k'], ['o', 'p', 'f'], ['m', 'l', 't'], ['r', 'q', 'u'], ['d', 'a', 'c'], ['r', 'v', 'u'], ['h', 'o', 'q'], ['j', 'c', 'k'], ['h', 'r', 'q'], ['o', 'g', 'p'], ['b', 'g', 'h'], ['b', 'a', 'c'], ['a', 'e', 'f'], ['r', 's', 'v'], ['h', 'r', 'i'], ['n', 'm', 'u'], ['m', 't', 'u'], ['n', 'o', 'f'], ['b', 'a', 'g'], ['d', 'm', 'l'], ['n', 'm', 'e'], ['b', 'c', 'i'], ['s', 't', 'k'], ['n', 'q', 'o'], ['s', 'i', 'j'], ['j', 'c', 'i'], ['h', 'o', 'g']]
	Coordinate Data:
		m : [107407935025773245480715658111 / 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -954064021693133108490262165807 / 500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 724490120592699128943738715401 / 125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		s : [16666666666666666666666666571 / 100000000000000000000000000000, -211695098702862780320021219407 / 200000000000000000000000000000, 1360827634879543387887380042049 / 1000000000000000000000000000000]
		b : [1499999999999999999999999998853 / 1000000000000000000000000000000, 288675134594812882254574390913 / 1000000000000000000000000000000, 81649658092772603273242802537 / 50000000000000000000000000000]
		h : [749999999999999999999999999999 / 500000000000000000000000000000, -288675134594812882254574390249 / 1000000000000000000000000000000, 163299316185545206546485605261 / 200000000000000000000000000000]
		p : [5 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 5618829584365158890478422389 / 4000000000000000000000000000000000000000000000000000000]
		r : [499999999999999999999999999713 / 500000000000000000000000000000, -36084391824351610281821798771 / 31250000000000000000000000000, 102062072615965754091553503259 / 125000000000000000000000000000]
		o : [2, 7072550948810527748645046259653 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 1404707396091289722619605597251 / 1000000000000000000000000000000000000000000000000000000000]
		u : [1 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, 351176849022822430654901399313 / 500000000000000000000000000000000000000000000000000000000]
		g : [999999999999999999999999999713 / 500000000000000000000000000000, 577350269189625764509148780833 / 1000000000000000000000000000000, 102062072615965754091553503259 / 125000000000000000000000000000]
		d : [-5734693930562135230168640994583 / 10000000000000000000000000000000000000000000000000000000000, 577350269189625764509148780833 / 1000000000000000000000000000000, 816496580927726032732428024667 / 1000000000000000000000000000000]
		a : [499999999999999999999999999713 / 500000000000000000000000000000, 57735026918962576450914878149 / 100000000000000000000000000000, 408248290463863016366214012801 / 500000000000000000000000000000]
		l : [-166666666666666666666666666743 / 200000000000000000000000000000, 96225044864937627418191463637 / 1000000000000000000000000000000, 68041381743977169394369001997 / 125000000000000000000000000000]
		e : [1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 2973986805380743655916257859377 / 50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		k : [-333333333333333333333333334289 / 1000000000000000000000000000000, -96225044864937627418191463141 / 500000000000000000000000000000, 1360827634879543387887380041347 / 1000000000000000000000000000000]
		i : [999999999999999999999999998853 / 1000000000000000000000000000000, -577350269189625764509148779839 / 1000000000000000000000000000000, 81649658092772603273242802537 / 50000000000000000000000000000]
		t : [-66666666666666666666666666743 / 200000000000000000000000000000, -153960071783900203869106341423 / 200000000000000000000000000000, 544331053951817355154952016679 / 1000000000000000000000000000000]
		c : [499999999999999999999999998853 / 1000000000000000000000000000000, 288675134594812882254574390913 / 1000000000000000000000000000000, 816496580927726032732428025019 / 500000000000000000000000000000]
		n : [1, 44441448347317534271315033907 / 31250000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -1153033973132509698215045078287 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		q : [3 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, 1404707396091289722619605597251 / 1000000000000000000000000000000000000000000000000000000000]
		j : [166666666666666666666666665137 / 1000000000000000000000000000000, -240562612162344068545478658101 / 500000000000000000000000000000, 2177324215807269420619808066717 / 1000000000000000000000000000000]
		v : [41666666666666666666666666571 / 250000000000000000000000000000, -408956440675984916527313719467 / 250000000000000000000000000000, 544331053951817355154952017381 / 1000000000000000000000000000000]
		f : [3 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 7023536980456448613098027986259 / 10000000000000000000000000000000000000000000000000000000000]

Desired square lengths:
	default : 1

Checking inequality 1:
	 d  = 3
	|V| = 22
	|E| = 60
	Success: d|V| >= |E|

Checking self-intersection:
	Square collision distance = 488138104141000271517029614315950499193537704280552581886588399724966526949750841307344961417874729596294528691034481 / 976411198078083373343848946899029434041506760636687769832787536513698334709115322265625000000000000000000000000000000
	Collision distance in [88382237549692283100655493469 / 125000000000000000000000000000, 707057900397538264805243947753 / 1000000000000000000000000000000] ~ [0.70706, 0.70706]
	Success: starting realization non-self-intersecting

Checking inequality 2:
	sigma_min in [0, 1 / 5000] ~ [0.0, 0.0002]
	Failed: sigma_min not positive