22 vertices

bcdefg aghic abijkd acklme admnf aenopg afpqhb bgqrsi bhsjc cistuk cjuvld dkvonm dlne emlof fnlvp fovuqg gputrh hqts hrtji jsrqu jtqpvk kupol

show/hide visualization coordinates

a : (0.25, 1.0103629710818454, 0.4082482904638629)
b : (0.25, 0.43301270189221963, 1.2247448713915887)
c : (0.75, 0.14433756729740677, 0.4082482904638629)
d : (0.75, 0.7216878364870325, -0.40824829046386313)
e : (0.25, 1.587713240271471, -0.40824829046386313)
f : (-0.25, 0.7216878364870325, -0.40824829046386313)
g : (-0.25, 0.14433756729740677, 0.4082482904638629)
h : (-0.25, -0.43301270189221897, 1.2247448713915887)
i : (0.75, -0.43301270189221897, 1.2247448713915887)
j : (0.25, -0.721687836487032, 0.4082482904638629)
k : (0.25, -0.1443375672974061, -0.40824829046386313)
l : (0.25, 0.43301270189221963, -1.2247448713915892)
m : (0.75, 1.2990381056766582, -1.2247448713915892)
n : (-0.25, 1.2990381056766582, -1.2247448713915892)
o : (-0.75, 0.43301270189221963, -1.2247448713915892)
p : (-0.75, -0.1443375672974061, -0.40824829046386313)
q : (-0.75, -0.721687836487032, 0.4082482904638629)
r : (-0.75, -1.2990381056766578, 1.2247448713915887)
s : (0.25, -1.2990381056766578, 1.2247448713915887)
t : (-0.25, -1.5877132402714704, 0.4082482904638629)
u : (-0.25, -1.0103629710818447, -0.40824829046386313)
v : (-0.25, -0.43301270189221897, -1.2247448713915892)
			
show/hide manual existence proof

This is part of the standard sphere packing arrangement (link).
			
show/hide computer existence proof (failed) (see shape-existence, preprint)

Attempting to prove existence

Starting realization:
	Abstract data:	
		mode: maximal_simplices
		data: [['n', 'o', 'l'], ['d', 'a', 'e'], ['a', 'g', 'f'], ['b', 'i', 'h'], ['d', 'c', 'k'], ['q', 't', 'u'], ['h', 'r', 's'], ['d', 'l', 'k'], ['g', 'p', 'f'], ['j', 't', 's'], ['q', 'g', 'p'], ['k', 'j', 'u'], ['n', 'e', 'f'], ['d', 'm', 'e'], ['q', 'u', 'p'], ['o', 'p', 'f'], ['v', 'u', 'k'], ['j', 't', 'u'], ['d', 'a', 'c'], ['j', 'c', 'k'], ['h', 'r', 'q'], ['b', 'g', 'h'], ['b', 'a', 'c'], ['v', 'o', 'p'], ['a', 'e', 'f'], ['v', 'u', 'p'], ['v', 'l', 'k'], ['n', 'o', 'f'], ['b', 'a', 'g'], ['d', 'm', 'l'], ['h', 's', 'i'], ['n', 'm', 'e'], ['b', 'c', 'i'], ['v', 'o', 'l'], ['r', 's', 't'], ['s', 'i', 'j'], ['r', 'q', 't'], ['m', 'n', 'l'], ['j', 'c', 'i'], ['h', 'q', 'g']]
	Coordinate Data:
		m : [1060777804838684137077031569961 / 12500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 2449761404695038522749122448051 / 50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 1660478698510582971623700470949 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		s : [1 / 2, 1299038105676657970145584756129 / 500000000000000000000000000000, -489897948556635619639456814941 / 200000000000000000000000000000]
		b : [1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, -489897948556635619639456814941 / 200000000000000000000000000000]
		h : [1, 346410161513775458705489268301 / 200000000000000000000000000000, -489897948556635619639456814941 / 200000000000000000000000000000]
		p : [3 / 2, 721687836487032205636435975627 / 500000000000000000000000000000, -816496580927726032732428024901 / 1000000000000000000000000000000]
		r : [3 / 2, 1299038105676657970145584756129 / 500000000000000000000000000000, -489897948556635619639456814941 / 200000000000000000000000000000]
		o : [3 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 4246246384279644289231598533921 / 50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		u : [1, 2309401076758503058036595122007 / 1000000000000000000000000000000, -816496580927726032732428024901 / 1000000000000000000000000000000]
		g : [1000000000000000000000000001811 / 1000000000000000000000000000000, 577350269189625764509148779979 / 500000000000000000000000000000, -1632993161855452065464856050543 / 1000000000000000000000000000000]
		d : [-419646588288452639520725746001 / 2500000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 577350269189625764509148780501 / 1000000000000000000000000000000, -816496580927726032732428024901 / 1000000000000000000000000000000]
		a : [1 / 2, 1154700538379251529018297561 / 4000000000000000000000000000, -1632993161855452065464856049803 / 1000000000000000000000000000000]
		l : [1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 1435451202357511164203142517873 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		e : [1 / 2, -1154700538379251529018297561 / 4000000000000000000000000000, -816496580927726032732428024901 / 1000000000000000000000000000000]
		k : [124999999999999999999999999539 / 250000000000000000000000000000, 1443375672974064411272871952319 / 1000000000000000000000000000000, -816496580927726032732428024149 / 1000000000000000000000000000000]
		i : [1259468415292481075550039123313 / 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 346410161513775458705489268301 / 200000000000000000000000000000, -489897948556635619639456814941 / 200000000000000000000000000000]
		t : [1, 2886751345948128822545743902509 / 1000000000000000000000000000000, -1632993161855452065464856049803 / 1000000000000000000000000000000]
		c : [116574855197581616080868771523 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 1154700538379251529018297561003 / 1000000000000000000000000000000, -1632993161855452065464856049803 / 1000000000000000000000000000000]
		n : [1, -889299110545128172696046883083 / 20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -2584417762078809413189491041447 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		q : [3 / 2, 505181485540922543945505182939 / 250000000000000000000000000000, -1632993161855452065464856049803 / 1000000000000000000000000000000]
		j : [499999999999999999999999998159 / 1000000000000000000000000000000, 2020725942163690175782020732819 / 1000000000000000000000000000000, -408248290463863016366214012263 / 250000000000000000000000000000]
		v : [1, 346410161513775458705489268301 / 200000000000000000000000000000, -7610697935040126994830477676629 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		f : [500000000000000000000000000917 / 500000000000000000000000000000, 288675134594812882254574389721 / 500000000000000000000000000000, -16329931618554520654648560513 / 20000000000000000000000000000]

Desired square lengths:
	default : 1

Checking inequality 1:
	 d  = 3
	|V| = 22
	|E| = 60
	Success: d|V| >= |E|

Checking self-intersection:
	Square collision distance = 516434037134042872866680236086422813976092123038447276189071274255145917829558984513566402484805022854095585537208099649 / 999616736403910077036159506952936268933584544525815213838684867127155750690414610000000000000000000000000000000000000000
	Collision distance in [71877120378382394376842181031 / 100000000000000000000000000000, 718771203783823943768421810311 / 1000000000000000000000000000000] ~ [0.71877, 0.71877]
	Success: starting realization non-self-intersecting

Checking inequality 2:
	sigma_min in [0, 1 / 5000] ~ [0.0, 0.0002]
	Failed: sigma_min not positive