23 vertices

bcdefg aghic abijkd ackjle adlmf aemnog afophb bgpqri bhrsjc cisldk cjd djstme eltunf fmuvo fnvpg govqh hpvwr hqwtsi irtlj lsrwum mtwvn nuwqpo qvutr

show/hide visualization coordinates

a : (-0.17711222807397875, -0.6796060617449119, -0.3694186663064662)
b : (-0.04313763185841757, -1.179606061744912, 0.48618101086088594)
c : (-0.9530567083136137, -1.1275978162874694, 0.07466865781743126)
d : (-1.0870313045291753, -0.6275978162874695, -0.7809310193499209)
e : (-0.31108682428954015, -0.1796060617449119, -1.2250183434738184)
f : (0.5988322521656562, -0.23161430720235432, -0.8135059904303636)
g : (0.7328068483812176, -0.7316143072023543, 0.042093686736988545)
h : (0.36678144459677886, -0.3655889034179157, 0.8976933639043407)
i : (-0.5431376318584176, -0.3135806579604733, 0.48618101086088594)
j : (-1.4530567083136137, -0.26157241250303076, 0.07466865781743126)
k : (-1.8629757847688104, -1.0755895708300272, -0.3368436952260235)
l : (-0.6771122280739788, 0.18641934203952676, -0.3694186663064662)
m : (0.09883225216565616, 0.6344110965820843, -0.8135059904303636)
n : (1.0988322521656562, 0.6344110965820843, -0.8135059904303636)
o : (1.4648576559500948, -0.1542640380127286, -0.31952528649923595)
p : (1.3308830597345334, -0.23161430720235432, 0.6684361213630194)
q : (0.8308830597345335, 0.47971055820283276, 1.1624168252941471)
r : (-0.13321855540322103, 0.500436500366523, 0.8976933639043407)
s : (-1.0431376318584173, 0.5524447458239654, 0.48618101086088594)
t : (-0.26719315161878243, 1.000436500366523, 0.042093686736988545)
u : (0.5988322521656562, 1.3457359619872715, -0.31952528649923595)
v : (0.9648576559500948, 0.5570608273924585, 0.17445541743189175)
w : (0.46485765595009476, 1.2683856927976458, 0.6684361213630194)
			
show/hide manual existence proof

This is a hexagonal antiprism stacked on a truncated subdivided tetrahedron.
			
show/hide computer existence proof (failed) (see shape-existence, preprint)

Attempting to prove existence

Starting realization:
	Abstract data:	
		mode: maximal_simplices
		data: [['b', 'i', 'c'], ['d', 'j', 'k'], ['d', 'l', 'e'], ['c', 'i', 'j'], ['b', 'g', 'a'], ['m', 'l', 't'], ['h', 'i', 'r'], ['b', 'h', 'g'], ['i', 's', 'r'], ['m', 'u', 'n'], ['b', 'c', 'a'], ['v', 'q', 'w'], ['t', 's', 'r'], ['o', 'g', 'p'], ['o', 'f', 'n'], ['h', 'g', 'p'], ['s', 'j', 'l'], ['i', 'j', 's'], ['d', 'e', 'a'], ['m', 'e', 'f'], ['u', 'v', 'w'], ['v', 'q', 'p'], ['q', 'r', 'w'], ['s', 'l', 't'], ['h', 'q', 'p'], ['c', 'j', 'k'], ['v', 'n', 'o'], ['m', 'u', 't'], ['d', 'c', 'k'], ['m', 'f', 'n'], ['d', 'j', 'l'], ['h', 'q', 'r'], ['e', 'f', 'a'], ['u', 'v', 'n'], ['v', 'o', 'p'], ['w', 'u', 't'], ['f', 'g', 'a'], ['o', 'f', 'g'], ['d', 'c', 'a'], ['b', 'h', 'i'], ['m', 'e', 'l'], ['w', 't', 'r']]
	Coordinate Data:
		n : [744963980283661193896066778111 / 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 4301051545533362444278313723597 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -133567339194756508057614133153 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		r : [246410161513775458705489268301 / 200000000000000000000000000000, 133974596215561353236276829247 / 1000000000000000000000000000000, -855599677167352192969235766211 / 500000000000000000000000000000]
		f : [1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, -720166974292256813423439332213 / 50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		j : [1275944480239635011829643660411 / 500000000000000000000000000000, 447991754542557523823757827563 / 500000000000000000000000000000, -111021831030974365544364846559 / 125000000000000000000000000000]
		m : [1, -780672212918739866817458753919 / 2000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 2173193976625781646589154595143 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		q : [133974596215561353236276829247 / 500000000000000000000000000000, 154700538379251529018297561003 / 1000000000000000000000000000000, -1975922815724510758100672904091 / 1000000000000000000000000000000]
		e : [704959538227598182532960244829 / 500000000000000000000000000000, 203504289581749042646870249579 / 250000000000000000000000000000, 205756176521727365395888189987 / 500000000000000000000000000000]
		d : [2185863556694831376895564150069 / 1000000000000000000000000000000, 1262008912869553694411238825879 / 1000000000000000000000000000000, -32574971080442731385683006261 / 1000000000000000000000000000000]
		k : [2961808036934466388725207810481 / 1000000000000000000000000000000, 855000333706055609117498326721 / 500000000000000000000000000000, -476662295204340193563142392497 / 1000000000000000000000000000000]
		w : [633974596215561353236276829247 / 1000000000000000000000000000000, -633974596215561353236276829247 / 1000000000000000000000000000000, -370485527948345767143876169517 / 250000000000000000000000000000]
		h : [146410161513775458705489268301 / 200000000000000000000000000000, 1, -855599677167352192969235766211 / 500000000000000000000000000000]
		v : [16746824526945169154534603513 / 125000000000000000000000000000, 38675134594812882254574389921 / 500000000000000000000000000000, -246990351965563844762584113063 / 250000000000000000000000000000]
		a : [25518889604792700236592873203 / 20000000000000000000000000000, 657008579163498085293740499743 / 500000000000000000000000000000, -444087324123897462177459385511 / 1000000000000000000000000000000]
		g : [5719146934131853855683174543 / 15625000000000000000000000000, 21344146934131853855683174543 / 15625000000000000000000000000, -855599677167352192969235766211 / 1000000000000000000000000000000]
		t : [21344146934131853855683174543 / 15625000000000000000000000000, -5719146934131853855683174543 / 15625000000000000000000000000, -855599677167352192969235766211 / 1000000000000000000000000000000]
		c : [1025944480239635011829643660411 / 500000000000000000000000000000, 1762008912869553694411238825879 / 1000000000000000000000000000000, -111021831030974365544364846559 / 125000000000000000000000000000]
		p : [-46410161513775458705489268301 / 200000000000000000000000000000, 13531646934131853855683174543 / 15625000000000000000000000000, -370485527948345767143876169517 / 250000000000000000000000000000]
		i : [820984942012036829296683415873 / 500000000000000000000000000000, 947991754542557523823757827899 / 1000000000000000000000000000000, -1299687001291249655146695153691 / 1000000000000000000000000000000]
		o : [-5719146934131853855683174543 / 15625000000000000000000000000, 3154700538379251529018297561 / 4000000000000000000000000000, -246990351965563844762584113011 / 500000000000000000000000000000]
		b : [285492471006018414648341707791 / 250000000000000000000000000000, 453504289581749042646870249579 / 250000000000000000000000000000, -1299687001291249655146695152447 / 1000000000000000000000000000000]
		u : [1 / 2, -711324865405187117745425609749 / 1000000000000000000000000000000, -246990351965563844762584113011 / 500000000000000000000000000000]
		l : [1775944480239635011829643661299 / 1000000000000000000000000000000, 447991754542557523823757826747 / 1000000000000000000000000000000, -444087324123897462177459385507 / 1000000000000000000000000000000]
		s : [535492471006018414648341707791 / 250000000000000000000000000000, 8196635075811887706003465681 / 100000000000000000000000000000, -1299687001291249655146695152447 / 1000000000000000000000000000000]

Desired square lengths:
	default : 1

Checking inequality 1:
	 d  = 3
	|V| = 23
	|E| = 63
	Success: d|V| >= |E|

Checking self-intersection:
	Square collision distance = 31232829181144984589577679501040010177554006802997754234774998828545685639362788978613525725057777992623689329589463169 / 62483018147260332526543763841311452233761149976355833200144325708913520836510007500000000000000000000000000000000000000
	Collision distance in [707008545899845209149339111693 / 1000000000000000000000000000000, 353504272949922604574669555847 / 500000000000000000000000000000] ~ [0.70701, 0.70701]
	Success: starting realization non-self-intersecting

Checking inequality 2:
	sigma_min in [0, 1 / 5000] ~ [0.0, 0.0002]
	Failed: sigma_min not positive