23 vertices

bcdefg aghic abijkd acklme admnf aenopg afpohb bgoqri bhrsjc cisk cjstld dktm dltune emuqof fnqhgp fog honuvr hqvwsi irwtkj kswuml mtwvqn quwr rvuts

show/hide visualization coordinates

a : (0.5652173913043478, -0.5773502691896257, -0.1419994053787349)
b : (0.06521739130434782, -0.8660254037844386, -0.9584959863064609)
c : (0.5652173913043478, -5.551115123125783e-17, -0.9584959863064609)
d : (1.065217391304348, 0.2886751345948128, -0.1419994053787349)
e : (1.065217391304348, -0.2886751345948129, 0.6744971755489911)
f : (0.5652173913043478, -1.1547005383792515, 0.6744971755489911)
g : (0.06521739130434782, -1.4433756729740643, -0.1419994053787349)
h : (-0.43478260869565216, -0.5773502691896257, -0.1419994053787349)
i : (-0.43478260869565216, -5.551115123125783e-17, -0.9584959863064609)
j : (0.06521739130434782, 0.6735753140545633, -1.5028270402582784)
k : (0.5652173913043478, 0.9622504486493764, -0.6863304593305523)
l : (1.065217391304348, 1.2509255832441892, 0.13016612159717378)
m : (0.5652173913043478, 0.5773502691896257, 0.6744971755489911)
n : (0.06521739130434782, -0.2886751345948129, 0.6744971755489911)
o : (-0.43478260869565216, -1.1547005383792515, 0.6744971755489911)
p : (0.06521739130434782, -2.0207259421636903, 0.6744971755489911)
q : (-0.9347826086956522, -0.2886751345948129, 0.6744971755489911)
r : (-0.9347826086956522, 0.2886751345948128, -0.1419994053787349)
s : (-0.43478260869565216, 0.9622504486493764, -0.6863304593305523)
t : (0.06521739130434782, 1.2509255832441892, 0.13016612159717378)
u : (-0.43478260869565216, 0.5773502691896257, 0.6744971755489911)
v : (-1.434782608695652, 0.5773502691896257, 0.6744971755489911)
w : (-0.9347826086956522, 1.2509255832441892, 0.13016612159717378)
			
show/hide manual existence proof

This is shape 14_124 stacked on a truncated subdivided tetrahedron.
			
show/hide computer existence proof (failed) (see shape-existence, preprint)

Attempting to prove existence

Starting realization:
	Abstract data:	
		mode: maximal_simplices
		data: [['b', 'i', 'c'], ['d', 'l', 'k'], ['h', 'q', 'o'], ['o', 'f', 'p'], ['v', 'q', 'r'], ['s', 't', 'w'], ['c', 'i', 'j'], ['b', 'g', 'a'], ['m', 'l', 't'], ['h', 'i', 'r'], ['u', 'q', 'n'], ['b', 'h', 'g'], ['i', 's', 'r'], ['m', 'u', 'n'], ['b', 'c', 'a'], ['o', 'g', 'p'], ['o', 'f', 'n'], ['i', 'j', 's'], ['s', 'k', 't'], ['d', 'e', 'a'], ['u', 'v', 'w'], ['m', 'e', 'n'], ['w', 's', 'r'], ['c', 'j', 'k'], ['f', 'g', 'p'], ['s', 'j', 'k'], ['e', 'f', 'n'], ['m', 'u', 't'], ['o', 'q', 'n'], ['d', 'c', 'k'], ['h', 'q', 'r'], ['e', 'f', 'a'], ['m', 'd', 'e'], ['l', 'k', 't'], ['w', 'u', 't'], ['o', 'g', 'h'], ['f', 'g', 'a'], ['u', 'v', 'q'], ['d', 'c', 'a'], ['b', 'h', 'i'], ['w', 'v', 'r'], ['m', 'd', 'l']]
	Coordinate Data:
		n : [97863193178125578794309595233 / 50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 56501340925147150656383916357 / 50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -2151017993341934170848126576593 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		r : [1000000000000000000000000000541 / 1000000000000000000000000000000, -577350269189625764509148780189 / 1000000000000000000000000000000, 816496580927726032732428025123 / 1000000000000000000000000000000]
		f : [-1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 6631293066554369479672084635007 / 10000000000000000000000000000000000000000000000000000000000]
		j : [14438474975923675393944476317 / 10000000000000000000000000000000000000000000000000000000, -120281306081172034272739329167 / 125000000000000000000000000000, 544331053951817355154952016859 / 250000000000000000000000000000]
		m : [-1 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, 331564653327718473983604231751 / 250000000000000000000000000000000000000000000000000000000]
		q : [1, -1330959755681099230872294846567 / 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 1042286978526455908681912740863 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		d : [-499999999999999999999999999729 / 500000000000000000000000000000, -577350269189625764509148780189 / 1000000000000000000000000000000, 816496580927726032732428026449 / 1000000000000000000000000000000]
		k : [-499999999999999999999999999097 / 1000000000000000000000000000000, -1250925583244189156436489023899 / 1000000000000000000000000000000, 42525863589985730871480626343 / 31250000000000000000000000000]
		e : [-1, 1959771646183977593976809784081 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 1326258613310873895934416927001 / 1000000000000000000000000000000000000000000000000000000000]
		w : [25000000000000000000000000009 / 25000000000000000000000000000, -1539600717839002038691063414463 / 1000000000000000000000000000000, 54433105395181735515495201719 / 100000000000000000000000000000]
		h : [250000000000000000000000000553 / 500000000000000000000000000000, 288675134594812882254574390889 / 1000000000000000000000000000000, 816496580927726032732428025353 / 1000000000000000000000000000000]
		v : [3 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, 347109631628362979695538485007 / 250000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		a : [-499999999999999999999999999979 / 1000000000000000000000000000000, 18042195912175805140910899429 / 62500000000000000000000000000, 408248290463863016366214012999 / 500000000000000000000000000000]
		g : [5414428115971378272729178618877 / 10000000000000000000000000000000000000000000000000000000000, 288675134594812882254574390329 / 250000000000000000000000000000, 816496580927726032732428025123 / 1000000000000000000000000000000]
		t : [225601171498807428030382442453 / 625000000000000000000000000000000000000000000000000000000, -1539600717839002038691063414463 / 1000000000000000000000000000000, 544331053951817355154952017853 / 1000000000000000000000000000000]
		c : [-499999999999999999999999998917 / 1000000000000000000000000000000, -2309401076758503058036595117 / 8000000000000000000000000000, 1632993161855452065464856050909 / 1000000000000000000000000000000]
		p : [-3213857065063861664561102987209 / 5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 346410161513775458705489268301 / 200000000000000000000000000000, -96927360688290728367678831413 / 31250000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		i : [250000000000000000000000000541 / 500000000000000000000000000000, -2309401076758503058036595117 / 8000000000000000000000000000, 816496580927726032732428025123 / 500000000000000000000000000000]
		o : [1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 513761391507984773839014196529 / 25000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
		b : [541442811597137827272917861887 / 500000000000000000000000000000000000000000000000000000000, 577350269189625764509148781127 / 1000000000000000000000000000000, 816496580927726032732428025123 / 500000000000000000000000000000]
		u : [1 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, 3315646533277184739836042317517 / 5000000000000000000000000000000000000000000000000000000000]
		l : [-999999999999999999999999999639 / 1000000000000000000000000000000, -1539600717839002038691063414463 / 1000000000000000000000000000000, 544331053951817355154952018517 / 1000000000000000000000000000000]
		s : [250000000000000000000000000451 / 500000000000000000000000000000, -1250925583244189156436489023899 / 1000000000000000000000000000000, 1360827634879543387887380042313 / 1000000000000000000000000000000]

Desired square lengths:
	default : 1

Checking inequality 1:
	 d  = 3
	|V| = 23
	|E| = 63
	Success: d|V| >= |E|

Checking self-intersection:
	Square collision distance = 31234102466682775971624557120017122287835675741108989667483339348256151230261607034643410792450259952868206090106125041 / 62484626654230259733174825362116893218965875520243199016570894600097160309711415000000000000000000000000000000000000000
	Collision distance in [141402771388776164324958115679 / 200000000000000000000000000000, 176753464235970205406197644599 / 250000000000000000000000000000] ~ [0.70701, 0.70701]
	Success: starting realization non-self-intersecting

Checking inequality 2:
	sigma_min in [0, 1 / 5000] ~ [0.0, 0.0002]
	Failed: sigma_min not positive