show/hide visualization coordinates
a : (0.2826086956521739, 0.8158210325505582, 0.0354998513446837)
b : (-0.2173913043478261, 0.5271458979557453, 0.8519964322724097)
c : (0.7826086956521738, 0.5271458979557453, 0.8519964322724097)
d : (1.2826086956521738, 0.8158210325505582, 0.0354998513446837)
e : (0.7826086956521738, 1.104496167145371, -0.7809967295830423)
f : (-0.2173913043478261, 1.104496167145371, -0.7809967295830423)
g : (-0.7173913043478262, 0.8158210325505582, 0.0354998513446837)
h : (-1.0507246376811594, 0.046020673631057135, 0.579830905296501)
i : (-0.5507246376811594, -0.24265446096375573, 1.396327486224227)
j : (0.2826086956521739, 0.2384707633609324, 1.6684930132001354)
k : (0.2826086956521739, -0.3388795058286933, 0.8519964322724097)
l : (0.7826086956521738, -0.05020437123388047, 0.0354998513446837)
m : (1.2826086956521738, 0.2384707633609324, -0.7809967295830423)
n : (0.2826086956521739, 0.2384707633609324, -0.7809967295830423)
o : (-0.7173913043478262, 0.2384707633609324, -0.7809967295830423)
p : (-1.5507246376811594, 0.33469580822587003, -0.23666567563122498)
q : (-1.0507246376811594, -0.5313295955585686, -0.23666567563122498)
r : (-0.5507246376811594, -0.8200047301533815, 0.579830905296501)
s : (0.2826086956521739, -0.916229775018319, 0.0354998513446837)
t : (0.7826086956521738, -0.6275546404235062, -0.7809967295830423)
u : (-0.2173913043478261, -0.6275546404235062, -0.7809967295830423)
v : (-0.5507246376811594, -1.3973549993430072, -0.23666567563122498)
w : (0.2826086956521739, -1.4935800442079448, -0.7809967295830423)
show/hide computer existence proof (failed)
(see shape-existence, preprint)
Attempting to prove existence
Starting realization:
Abstract data:
mode: maximal_simplices
data: [['v', 's', 'r'], ['v', 'q', 'r'], ['s', 't', 'w'], ['b', 'c', 'j'], ['b', 'g', 'a'], ['m', 'l', 't'], ['h', 'i', 'r'], ['o', 'q', 'p'], ['b', 'h', 'g'], ['s', 'l', 'k'], ['i', 'k', 'r'], ['m', 'n', 't'], ['b', 'c', 'a'], ['o', 'g', 'p'], ['b', 'i', 'j'], ['u', 'o', 'n'], ['o', 'f', 'n'], ['c', 'l', 'k'], ['d', 'c', 'l'], ['h', 'g', 'p'], ['v', 's', 'w'], ['d', 'e', 'a'], ['s', 'k', 'r'], ['u', 'n', 't'], ['u', 'v', 'w'], ['m', 'e', 'n'], ['s', 'l', 't'], ['h', 'q', 'p'], ['c', 'j', 'k'], ['e', 'f', 'n'], ['u', 'o', 'q'], ['h', 'q', 'r'], ['e', 'f', 'a'], ['m', 'd', 'e'], ['w', 'u', 't'], ['f', 'g', 'a'], ['u', 'v', 'q'], ['o', 'f', 'g'], ['d', 'c', 'a'], ['b', 'h', 'i'], ['m', 'd', 'l'], ['i', 'j', 'k']]
Coordinate Data:
n : [2908407868292731221408618876227 / 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 1679170065672034006954397567701 / 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -8939240941712978313732592799781 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
r : [-208333333333333333333333333093 / 250000000000000000000000000000, -1058475493514313901600106097031 / 1000000000000000000000000000000, 136082763487954338788738004323 / 100000000000000000000000000000]
f : [-1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 3532065979525544401445120709573 / 5000000000000000000000000000000000000000000000000000000000]
j : [1730351877536247950971499265869 / 1000000000000000000000000000000000000000000000000000000000, 999019122288327109391745916167 / 1000000000000000000000000000000000000000000000000000000000, 612372435695794524549321018853 / 250000000000000000000000000000]
m : [1, -2094715049229521240930576274551 / 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 2937293599968132832899492455019 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
q : [-333333333333333333333333333237 / 250000000000000000000000000000, -769800358919501019345531707113 / 1000000000000000000000000000000, 544331053951817355154952018563 / 1000000000000000000000000000000]
d : [15625000000000000000000000009 / 15625000000000000000000000000, 288675134594812882254574390417 / 500000000000000000000000000000, 408248290463863016366214012333 / 500000000000000000000000000000]
k : [57678395917874931699049975529 / 50000000000000000000000000000000000000000000000000000000, -115470053837925152901829755967 / 200000000000000000000000000000, 326598632371090413092971210149 / 200000000000000000000000000000]
e : [1 / 2, 13531646934131853855683174543 / 15625000000000000000000000000, 2081514658736967450611283585341 / 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]
w : [3564449962112520771165146087331 / 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -346410161513775458705489268301 / 200000000000000000000000000000, 1412826391810217760578048283827 / 1000000000000000000000000000000000000000000000000000000000]
h : [-333333333333333333333333333093 / 250000000000000000000000000000, -96225044864937627418191463139 / 500000000000000000000000000000, 136082763487954338788738004323 / 100000000000000000000000000000]
v : [-208333333333333333333333333237 / 250000000000000000000000000000, -817912881351969833054627438933 / 500000000000000000000000000000, 544331053951817355154952018563 / 1000000000000000000000000000000]
a : [720979948973436646238124694113 / 1250000000000000000000000000000000000000000000000000000000, 57735026918962576450914878151 / 100000000000000000000000000000, 816496580927726032732428025611 / 1000000000000000000000000000000]
g : [-999999999999999999999999999423 / 1000000000000000000000000000000, 288675134594812882254574390417 / 500000000000000000000000000000, 816496580927726032732428026079 / 1000000000000000000000000000000]
t : [1 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, 7064131959051088802890241419131 / 10000000000000000000000000000000000000000000000000000000000]
c : [500000000000000000000000001153 / 1000000000000000000000000000000, 72168783648703220563643597729 / 250000000000000000000000000000, 1632993161855452065464856050039 / 1000000000000000000000000000000]
p : [-458333333333333333333333333237 / 250000000000000000000000000000, 48112522432468813709095731819 / 500000000000000000000000000000, 544331053951817355154952018563 / 1000000000000000000000000000000]
i : [-166666666666666666666666666359 / 200000000000000000000000000000, -120281306081172034272739329049 / 250000000000000000000000000000, 272165526975908677577476008487 / 125000000000000000000000000000]
o : [-1, 2001500609767044235729820211451 / 5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 706413195905108880289024141913 / 500000000000000000000000000000000000000000000000000000000]
b : [-249999999999999999999999999423 / 500000000000000000000000000000, 72168783648703220563643597729 / 250000000000000000000000000000, 326598632371090413092971210149 / 200000000000000000000000000000]
u : [-1 / 2, -13531646934131853855683174543 / 15625000000000000000000000000, 706413195905108880289024141913 / 500000000000000000000000000000000000000000000000000000000]
l : [500000000000000000000000001161 / 1000000000000000000000000000000, -57735026918962576450914878051 / 200000000000000000000000000000, 816496580927726032732428025611 / 1000000000000000000000000000000]
s : [5767839591787493169904997552909 / 10000000000000000000000000000000000000000000000000000000000, -115470053837925152901829756067 / 100000000000000000000000000000, 816496580927726032732428026079 / 1000000000000000000000000000000]
Desired square lengths:
default : 1
Checking inequality 1:
d = 3
|V| = 23
|E| = 63
Success: d|V| >= |E|
Checking self-intersection:
Square collision distance = 10201384232131731105753223969181203128884922835780389585133877807326196379723831916385323856801684365468221305257589649 / 20404388869550219788193719452529447463133606301752211494514608670023310041179690000000000000000000000000000000000000000
Collision distance in [707078703346945127094063034559 / 1000000000000000000000000000000, 2209620947959203522168946983 / 3125000000000000000000000000] ~ [0.70708, 0.70708]
Success: starting realization non-self-intersecting
Checking inequality 2:
sigma_min in [0, 1 / 5000] ~ [0.0, 0.0002]
Failed: sigma_min not positive