Spring 2025

Math 121: Introduction to Hodge Theory

Instructor: Salim Tayou

E-mail: salim.tayou@dartmouth.edu, Office: Kemeny Hall 341.

Schedule:

Syllabus:

This course is an introduction to Hodge theory, which lies at the intersection of analysis, topology, and algebraic geometry. It is a fundamental framework for studying complex manifolds and a very active area of research. Topics covered include: complex manifolds, Kähler geometry, de Rham cohomology, Laplace operator, harmonic forms, Hodge structures, and applications to algebraic geometry, including a discussion of the famous Hodge conjecture. If time permits, we will talk about variations of Hodge structures and their period domains. This course is intended for graduate students and advanced undergraduates.

Textbook:

Prerequisites:

Differential Topology at the level of Math 104 and Complex Analysis at the level of Math 43.

Grading:

Learning Outcomes:

By the end of this course, you should be able to: