Example 3.5.1. \(T(x) = Ax\).
If \(A\) is an \(m\times n\) complex matrix, then \(T(x) = Ax\) defines a linear transformation \(T:\C^n \to
\C^m\text{.}\) In Proposition 3.2.16, we saw that the linear map \(S:\C^m \to \C^n\) given by \(S(X) = A^* x\) satisfies the requisite property that
\begin{equation*}
\la T(v),w\ra_W = \la v, S(w)\ra_V.
\end{equation*}