This website uses features that are not well-supported by your browser. Please consider upgrading to a browser and version that fully supports CSS Grid and the CSS Flexible Box Layout Module.

Our commitment to inclusivity

Dartmouth’s capacity to advance its dual mission of education and research depends upon the full diversity and inclusivity of this community. We must increase diversity among our faculty, students, and staff. As we do so, we must also create a community in which every individual, regardless of gender, gender identity, sexual orientation, race, ethnicity, socio-economic status, disability, nationality, political or religious views, or position within the institution, is respected. On this close-knit and intimate campus, we must ensure that every person knows that they are a valued member of our community.

Roughly speaking, number theory is the study of the integers. Carl Friedrich Gauss is said to have claimed: "Mathematics is the queen of the sciences and number theory is the queen of mathematics." Number theorists are interested in topics like the distribution of prime numbers, the solutions to systems of polynomial equations with integer coefficients, the structure of symmetry groups of the roots of a polynomial, and the very deep generalizations of these topics. Many problems in number theory are simple to state but have surprising solutions that draw broadly from all areas of mathematics, and conjectures in number theory have stimulated major advances in other fields. Number theory is both beautiful in its abstraction and useful in practice: the foundation of modern cryptographic systems rely crucially on the difficulty of certain number theoretic problems.

- Asher Auel
- Algebraic geometry; Number theory; Associative rings and algebras
- Carl Pomerance
- Number theory
- Tom Shemanske
- Number theory
- John Voight
- Number theory; Algebraic geometry; Algebraic computing